首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >OPTiC: Optimizing Collaborative CPU–GPU Computing on Mobile Devices With Thermal Constraints
【24h】

OPTiC: Optimizing Collaborative CPU–GPU Computing on Mobile Devices With Thermal Constraints

机译:OPTiC:在具有热约束的移动设备上优化协作式CPU-GPU计算

获取原文
获取原文并翻译 | 示例

摘要

The CPU-graphic processing unit (GPU) co-execution of computation kernels on heterogeneous multiprocessor system-on-chip can significantly boost performance compared to the execution on either the CPU or the GPU alone. However, engaging multiple on-chip compute elements concurrently at the highest frequency may not provide the optimal performance in a mobile system with stringent thermal constraints. The system may repeatedly exceed the temperature threshold necessitating frequency throttling and hence performance degradation. We present OPTiC, an analytical framework that given a computation kernel can automatically select the partitioning point and the operating frequencies for optimal CPU-GPU co-execution under thermal constraints. OPTiC estimates, through modeling, CPU and GPU power, performance at different frequency points as well as the performance impact of thermal throttling and memory contention. Experimental evaluation on a commercial mobile platform shows that OPTiC achieves an average 13.68% performance improvement over existing schemes that enable co-execution without thermal considerations.
机译:与单独在CPU或GPU上执行相比,在异构多处理器片上系统上计算内核的CPU图形处理单元(GPU)共同执行可以显着提高性能。然而,在具有严格的热约束的移动系统中,以最高频率同时使用多个片上计算元件可能无法提供最佳性能。系统可能会反复超过温度阈值,从而需要进行频率调节,从而导致性能下降。我们介绍了OPTiC,这是一个分析框架,给定计算内核,该框架可以自动选择分区点和工作频率,以在热约束下实现最佳的CPU-GPU协同执行。 OPTiC通过建模来估计CPU和GPU的功耗,不同频率点的性能以及热调节和内存争用的性能影响。在商用移动平台上的实验评估表明,与现有方案相比,OPTiC在不考虑散热因素的情况下,可以实现共执行,其性能平均提高了13.68%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号