首页> 外文期刊>Concurrency, practice and experience >A collaborative CPU-GPU approach for deep learning on mobile devices
【24h】

A collaborative CPU-GPU approach for deep learning on mobile devices

机译:用于在移动设备上进行深度学习的协作式CPU-GPU方法

获取原文
获取原文并翻译 | 示例

摘要

As mobile devices become more prevalent, users tend to reassess their expectations regardingthe personalization ofmobile services. The data collected by amobile device's sensors provide anopportunity to gain insight into the user's profile. Recently, deep learning has gained momentumand has become the method of choice for solving machine learning problems. Interestingly,training a deep neural network on a mobile device is often mistakenly regarded as cumbersome.For instance, several deep learning frameworks only provide a CPU-based implementation forprediction tasks on a mobile device. In contrast to servers, a mobile computing environmentimposes many domain-specific constraints that invite us to review the general computingapproach used in a deep learning framework implementation. In this paper, we propose adeep learning framework that has been specifically designed for mobile device platforms. Ourapproach relies on the collaboration of the multicore CPU and the integrated GPU to acceleratedeep learning computation onmobile devices.Ourwork exploits the sharedmemory architectureof mobile devices to promote CPU-GPU collaboration without any data copying. We analyzeour approach with regard to three factors: performance/portability trade-off, power efficiency,and memory management.
机译:随着移动设备的普及,用户倾向于重新评估他们对移动服务的个性化的期望。由移动设备的传感器收集的数据提供了 r nopportunity来深入了解用户的个人资料。近年来,深度学习获得了发展势头,并且已成为解决机器学习问题的首选方法。有趣的是,在移动设备上训练深度神经网络通常被认为很麻烦。 r n例如,几个深度学习框架仅为移动设备上的预测任务提供基于CPU的实现。与服务器相反,移动计算环境 r 施加了许多特定于域的约束,这些约束促使我们回顾深度学习框架实现中使用的通用计算方法。在本文中,我们提出了专门针对移动设备平台设计的 n deep学习框架。我们的方法依靠多核CPU和集成GPU的协作来加速移动设备上的深度学习计算。我们的工作利用移动设备的共享内存架构来促进CPU-GPU的协作,而无需复制任何数据。我们针对三个因素分析方法:性能/可移植性的权衡,功率效率,存储器的管理。

著录项

  • 来源
    《Concurrency, practice and experience》 |2019年第17期|e5225.1-e5225.21|共21页
  • 作者单位

    Department of Computer Science andInformation Engineering, National TaiwanUniversity, Taipei, Taiwan,Research Center for Information TechnologyInnovation, Academia Sinica, Taipei, Taiwan;

    Department of Computer Science andInformation Engineering, National TaiwanUniversity, Taipei, Taiwan,Graduate Institute of Networking andMultimedia, National Taiwan University,Taipei, Taiwan;

    Department of Computer Science andInformation Engineering, National TaiwanUniversity, Taipei, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    deep learning, energy efficient, GPGPU, heterogeneous system, mobile computing, OpenCL;

    机译:深度学习;节能;GPGPU;异构系统;移动计算;OpenCL;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号