首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning
【24h】

NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning

机译:NeuroSim:在在线学习中对神经启发式架构进行基准测试的电路级宏模型

获取原文
获取原文并翻译 | 示例

摘要

Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the “analog” emerging nonvolatile memory (eNVM)'s “nonideal” device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification.
机译:已经提出了基于突触存储阵列的神经启发性架构,用于机器/深度学习算法中片上加权和加速和权重更新。在本文中,我们开发了NeuroSim,这是一种电路级宏模型,用于估计面积,等待时间,动态能量和泄漏功率,以促进采用主流和新兴设备技术的神经启发性架构的设计空间探索。 NeuroSim在电路和设备级别提供灵活的接口和多种设计选项。因此,NeuroSim可以被神经网络(NN)用作支持工具,以提供电路级的性能评估。借助NeuroSim,可以构建具有层次结构的集成框架,从设备级别(突触设备属性)到电路级别(阵列架构),再到算法级别(NN拓扑),从而可以对学习准确性进行指令精确的评估以及在线学习运行时的电路级性能指标。使用多层感知器作为案例研究算法,我们研究了“模拟”新兴非易失性存储器(eNVM)的“非理想”设备属性的影响,并确定了基于SRAM,数字和模拟eNVM的架构之间的权衡取舍,以进行在线学习和离线分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号