首页> 外文学位 >A Circuit-Level Model of Hippocampal, Entorhinal and Prefrontal Dynamics Underlying Rodent Maze Navigational Learning.
【24h】

A Circuit-Level Model of Hippocampal, Entorhinal and Prefrontal Dynamics Underlying Rodent Maze Navigational Learning.

机译:啮齿类动物迷宫导航学习背后的海马,内脏和前额叶动力学的电路级模型。

获取原文
获取原文并翻译 | 示例

摘要

Interactions between the hippocampus, parahippocampal regions and the prefrontal cortex are thought to underlie the formation, consolidation, and retrieval of short term memories and play an important role in the learning processes. To date, only conceptual models have been offered to explain the potential interactions among these regions, but their connectivity and synaptic regulation remain unknown. To better understand sequential learning and decision making during spatial navigation, a large-scale biological model was needed to further guide experimental studies. The results of a putative entorhinal grid cell and hippocampal place cell circuit-level model was reported, incorporating Hebbian learning, ion channels, and asynchronous background activity in the context of recent in vivo findings showing specific intracellular-extracellular precession disparities and place field destabilization by entorhinal lesioning. A more complex model was then proposed by adding another hippocampal formation structure, the subiculum, in a complete recurrent loop with the prefrontal cortex. The model replicated some of the dynamics of the mammalian hippocampal-frontal loop microcircuitry, including phase synchrony of prefrontal cells to hippocampal theta oscillations. It also demonstrated short-term augmentation of navigational sequences, decision making, and learning reinforcement. To demonstrate the computational model's functionality, a graphic environment with a navigating virtual mouse was created and could be used for further real-time simulations. Finally, to refute or support the proposed mechanisms of hippocampal-entorhinal dynamics, future experimental studies were proposed to test the types of extrinsic connectivity between the entorhinal cortex and the hippocampus and the intrinsic connectivity within the subiculum.
机译:海马,海马旁区域和前额叶皮层之间的相互作用被认为是短期记忆形成,巩固和恢复的基础,并且在学习过程中起着重要作用。迄今为止,仅提供了概念模型来解释这些区域之间的潜在相互作用,但它们的连通性和突触调节仍然未知。为了更好地了解空间导航过程中的顺序学习和决策,需要大规模的生物学模型来进一步指导实验研究。报道了一个假定的内脏网格细胞和海马地方细胞电路水平模型的结果,该结果结合了Hebbian学习,离子通道和异步背景活性,并在最近的体内发现中显示出特定的细胞内-细胞外进动差异和位置场不稳定。内脏病变。然后,通过在前额叶皮层的完整循环回路中添加另一个海马形成结构,下丘脑,提出了一个更复杂的模型。该模型复制了哺乳动物海马-额叶环微回路的某些动力学,包括前额叶细胞与海马θ振荡的相位同步。它还演示了导航序列的短期增强,决策制定和学习增强。为了演示计算模型的功能,创建了具有导航虚拟鼠标的图形环境,并可将其用于进一步的实时仿真。最后,为了反驳或支持所提出的海马-肠内动力学机制,提出了进一步的实验研究,以测试内在皮层与海马之间的外在连通性类型以及下丘脑内的内在连通性。

著录项

  • 作者

    Bray, Laurence C. Jayet.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Biology Neuroscience.;Engineering Biomedical.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号