首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >BioVision: A Biomimetics Platform for Intrinsically Motivated Visual Saliency Learning
【24h】

BioVision: A Biomimetics Platform for Intrinsically Motivated Visual Saliency Learning

机译:Biovision:一种用于本质上动力的视力效力学习的生物体平台

获取原文
获取原文并翻译 | 示例

摘要

We present BioVision, a bio-mimetics platform based on the human visual system. BioVision relies on the foveal vision principle based on a set of cameras with wide and narrow fields of view. We present in this platform a mechanism for learning visual saliency in an intrinsically motivated fashion. This model of saliency, learned and improved on-the-fly during the robot's exploration provides an efficient tool for localizing relevant objects within their environment. The proposed approach includes two intertwined components. On the one hand, a method for learning and incrementally updating a model of visual saliency from foveal observations. On the other hand, we investigate an autonomous exploration technique to efficiently learn such a saliency model. The proposed exploration, based on the intelligent adaptive curiosity (IAC) algorithm is able to drive the robot's exploration so that samples selected by the robot are likely to improve the current model of saliency. We then demonstrate that such a saliency model learned directly on a robot outperforms several state-of-the-art saliency techniques, and that IAC can drastically decrease the required time for learning a reliable saliency model. We also investigate the behavior of IAC in a non static environment, and how well this algorithm can adapt to changes.
机译:我们呈现基于人类视觉系统的生物模拟平台Biovision。基于一组具有宽和窄视野的相机,Biovision依赖于芯片视觉原理。我们在这个平台中展示了一种以内在动机的方式学习视觉显着的机制。在机器人探索期间,这种显着性,学习和改进的型号提供了一个有效的工具,用于本地化环境中的相关对象。所提出的方法包括两个交织的组件。一方面,一种学习的方法和逐步更新来自难度观测的视觉显着性模型。另一方面,我们调查自主探索技术,以有效地学习这种显着模型。基于智能自适应好奇心(IAC)算法的建议探索能够推动机器人的探索,以便机器人选择的样本可能会改善电流显着的模型。然后,我们证明,这种显着模型直接在机器人上学习优于几种最新的显着性技术,并且IAC可以大大降低学习可靠持续模型所需的时间。我们还研究了IAC在非静态环境中的行为,并且该算法如何适应变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号