首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Design of Communication Systems Using Deep Learning: A Variational Inference Perspective
【24h】

Design of Communication Systems Using Deep Learning: A Variational Inference Perspective

机译:深入学习的通信系统设计:变分推理视角

获取原文
获取原文并翻译 | 示例

摘要

Recent research in the design of end to end communication system using deep learning has produced models which can outperform traditional communication schemes. Most of these architectures leveraged autoencoders to design the encoder at the transmitter and decoder at the receiver and train them jointly by modeling transmit symbols as latent codes from the encoder. However, in communication systems, the receiver has to work with noise corrupted versions of transmit symbols. Traditional autoencoders are not designed to work with latent codes corrupted with noise. In this work, we provide a framework to design end to end communication systems which accounts for the existence of noise corrupted transmit symbols. The proposed method uses deep neural architecture. An objective function for optimizing these models is derived based on the concepts of variational inference. Further, domain knowledge such as channel type can be systematically integrated into the objective. Through numerical simulation, the proposed method is shown to consistently produce models with better packing density and achieving it faster in multiple popular channel models as compared to the previous works leveraging deep learning models.
机译:最近在使用深度学习的端到端通信系统设计中的研究已经产生了可以胜过传统通信方案的模型。这些架构中的大多数利用AutoEncoders在接收器处的发送器和解码器处设计编码器,并通过将发送符号建模为来自编码器的潜在代码来联合训练它们。然而,在通信系统中,接收器必须使用发射符号的噪声损坏。传统的AutoEncoders并非设计用于与噪声损坏的潜在代码一起使用。在这项工作中,我们提供了一个框架来设计结束到结束通信系统,其考虑存在噪声损坏的发射符号。该方法采用深神经结构。用于优化这些模型的目标函数是基于变分推理的概念来实现的。此外,可以系统地将诸如信道类型的域知识进行到目标中。通过数值模拟,所提出的方法被示出,始终生产具有更好的包装密度的模型,并且与以前的工作采用深度学习模型相比,多次流行渠道模型中更快地实现更快的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号