首页> 外文期刊>IEEE Transactions on Circuits and Systems >Floorplans, planar graphs, and layouts
【24h】

Floorplans, planar graphs, and layouts

机译:平面图,平面图和布局

获取原文
获取原文并翻译 | 示例

摘要

The topics discussed are minimization of the area occupied by a layout and related results concerning networks flow and rectilinear representation of planar graphs, based on a graph model of floorplans and layouts. Arbitrary floorplans are allowed. Given an arbitrary floorplan and the areas of the embedded building blocks, the existence and uniqueness of a zero wasted area layout are proved, and characterized by a necessary and sufficient condition. Based on this condition, a scheme is described to generate zero-wasted-area layouts. Given a family of dual network pairs for which the product of dual arc lengths are invariant, it is proved that the minimal product of their longest paths is not smaller than the maximal product of their shortest paths. It is also shown that the maximal product of the flows in such a family of dual network pairs is given by the total sum of the arc length product of each individual pair of dual arcs. An efficient procedure to derive a rectilinear representation for any planar graph is presented.
机译:讨论的主题是基于平面布置图和布局的图形模型,最小化布局所占的面积以及有关网络流动和平面图的直线表示的相关结果。允许使用任意平面图。给定任意的平面图和嵌入的构建块的面积,可以证明零浪费区域布局的存在和唯一性,并具有必要的充分条件。基于此条件,描述了一种生成零浪费区域布局的方案。给定一个双弧对的乘积不变的双网络对,证明其最长路径的最小乘积不小于其最短路径的最大乘积。还显示出,在这样的双网络对家族中,流的最大乘积由每个双双电弧对的电弧长度乘积的总和给出。提出了一种有效的过程来导出任何平面图的直线表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号