首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vision Systems
【24h】

A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vision Systems

机译:用于基于事件的视觉处理视觉系统的神经形态皮质层微芯片

获取原文
获取原文并翻译 | 示例

摘要

We present a neuromorphic cortical-layer processing microchip for address event representation (AER) spike-based processing systems. The microchip computes 2-D convolutions of video information represented in AER format in real time. AER, as opposed to conventional frame-based video representation, describes visual information as a sequence of events or spikes in a way similar to biological brains. This format allows for fast information identification and processing, without waiting to process complete image frames. The neuromorphic cortical-layer processing microchip presented in this paper computes convolutions of programmable kernels over the AER visual input information flow. It not only computes convolutions but also allows for a programmable forgetting rate, which in turn allows for a bio-inspired coincidence detection processing. Kernels are programmable and can be of arbitrary shape and arbitrary size of up to 32 times 32 pixels. The convolution processor operates on a pixel array of size 32 times 32, but can process an input space of up to 128 times 128 pixels. Larger pixel arrays can be directly processed by tiling arrays of chips. The chip receives and generates data in AER format, which is asynchronous and digital. However, its internal operation is based on analog low-current circuit techniques. The paper describes the architecture of the chip and circuits used for the pixels, including calibration techniques to overcome mismatch. Extensive experimental results are provided, describing pixel operation and calibration, convolution processing with and without forgetting, and high-speed recognition experiments like discriminating rotating propellers of different shape rotating at speeds of up to 5000 revolutions per second
机译:我们提出了一种基于神经网络的皮质层处理微芯片,用于基于地址事件表示(AER)峰值的处理系统。微芯片实时计算以AER格式表示的视频信息的二维卷积。与传统的基于帧的视频表示相反,AER以类似于生物大脑的方式将视觉信息描述为一系列事件或峰值。这种格式可以快速识别和处理信息,而无需等待处理完整的图像帧。本文介绍的神经形态皮质层处理微芯片可在AER视觉输入信息流上计算可编程内核的卷积。它不仅可以计算卷积,还可以设置一个可编程的遗忘率,从而可以进行生物启发的巧合检测处理。内核是可编程的,并且可以具有任意形状和任意大小,最多32乘以32像素。卷积处理器在大小为32乘32的像素阵列上运行,但是可以处理多达128乘128像素的输入空间。更大的像素阵列可以通过平铺芯片阵列直接进行处理。该芯片以异步和数字形式的AER格式接收并生成数据。但是,其内部操作基于模拟低电流电路技术。本文介绍了用于像素的芯片和电路的架构,包括克服失配的校准技术。提供了广泛的实验结果,描述了像素的操作和校准,具有或没有遗忘的卷积处理以及诸如识别以高达5000转/秒的速度旋转的不同形状的旋转螺旋桨的高速识别实验

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号