首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Subquadratic Space-Complexity Digit-Serial Multipliers Over $GF(2^{m})$ Using Generalized $(a,b)$-Way Karatsuba Algorithm
【24h】

Subquadratic Space-Complexity Digit-Serial Multipliers Over $GF(2^{m})$ Using Generalized $(a,b)$-Way Karatsuba Algorithm

机译:使用广义 $ GF(2 ^ {m})$ 的次二次空间复杂度数字串行乘数inline“> $(a,b)$ -Way Karatsuba算法

获取原文
获取原文并翻译 | 示例

摘要

Karatsuba algorithm (KA) is popularly used for high-precision multiplication by divide-and-conquer approach. Recently, subquadratic digit-serial multiplier based on -way KA decomposition is proposed in [1]. In this paper, we extend a -way KA to derive a generalized -way KA decomposition with . We have shown that -way KA and mult-way KA are special cases of the proposed -way KA decomposition. Based on the proposed KA decomposition, we have established two types of subquadratic digit-serial multipliers, namely, the KA-based multiplier and the recombined KA-based multiplier. From theoretical analysis, as well as, from synthesis results we have shown that the proposed KA-based multipliers have significantly less delay and less area-delay product (ADP) compared to the existing naive digit-serial multipliers.
机译:Karatsuba算法(KA)广泛用于采用分治法的高精度乘法。最近,在[1]中提出了基于-way KA分解的次二次数乘子。在本文中,我们扩展了一个KA来推导具有的广义KA分解。我们已经表明-way KA和多路KA是提出的-way KA分解的特例。基于提出的KA分解,我们建立了两种类型的次二次数串行乘法器,即基于KA的乘法器和基于重组KA的乘法器。从理论分析以及综合结果可以看出,与现有的朴素数字串行乘法器相比,基于KA的乘法器具有显着更少的延迟和更少的面积延迟积(ADP)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号