首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Efficient Subquadratic Space Complexity Architectures for Parallel MPB Single- and Double-Multiplications for All Trinomials Using Toeplitz Matrix-Vector Product Decomposition
【24h】

Efficient Subquadratic Space Complexity Architectures for Parallel MPB Single- and Double-Multiplications for All Trinomials Using Toeplitz Matrix-Vector Product Decomposition

机译:使用Toeplitz矩阵-矢量积分解的所有三项式的并行MPB单乘和双乘的高效次二次空间复杂性体系结构

获取原文
获取原文并翻译 | 示例

摘要

Subquadratic multiplication algorithm has received significant attention of cryptographic hardware researchers for efficient implementation public-key cryptosystems. In this paper, we derive a new shifted MPB (SMPB) representation based on modified polynomial basis (MPB). We have shown that by using MPB and SMPB, the proposed double basis multiplication can be transformed into Toeplitz matrix-vector product (TMVP) structure. Furthermore, by employing this formulation of double basis multiplication, we show that three-operand multiplication over for all trinomials can be realized efficiently by the recursive TMVP (RTMVP) formulation. To perform the three-operand multiplication with the RTMVP formulation, we have derived a new RTMVP decomposition scheme. The proposed single- and double-multiplications can, respectively, use TMVP and RTMVP decompositions to achieve subquadratic space complexity architectures. By theoretical analysis, it is shown that the proposed subquadratic multipliers involve significantly less space complexity and less computation time compared to the existing subquadratic multipliers using TMVP and Karatsuba algorithms. Moreover, our proposed double-multiplication design can be used in several applications involving successive multiplications, such as exponentiation, inversion, and elliptic curve point multiplication.
机译:次二次乘法算法已得到密码硬件研究人员的高度重视,以有效地实现公钥密码系统。在本文中,我们基于修正多项式(MPB)推导了新的移位MPB(SMPB)表示形式。我们已经表明,通过使用MPB和SMPB,可以将提出的双基乘法转换为Toeplitz矩阵矢量积(TMVP)结构。此外,通过采用这种双重基数乘法的公式,我们表明通过递归TMVP(RTMVP)公式可以有效地实现所有三项式的三操作数乘法。为了用RTMVP公式执行三操作数乘法,我们导出了一个新的RTMVP分解方案。所提出的单乘和双乘可以分别使用TMVP和RTMVP分解来实现二次空间复杂性体系结构。理论分析表明,与现有的使用TMVP和Karatsuba算法的二次乘法器相比,拟二次乘法器的空间复杂度和计算时间显着减少。此外,我们提出的双乘法设计可用于涉及连续乘法的多种应用中,例如求幂,求反和椭圆曲线点乘法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号