首页> 外文期刊>Biomedical Circuits and Systems, IEEE Transactions on >A 1.26 src='/images/tex/19099.gif' alt='mu{rm W}'> Cytomimetic IC Emulating Complex Nonlinear Mammalian Cell Cycle Dynamics: Synthesis, Simulation and Proof-of-Concept Measured Results
【24h】

A 1.26 src='/images/tex/19099.gif' alt='mu{rm W}'> Cytomimetic IC Emulating Complex Nonlinear Mammalian Cell Cycle Dynamics: Synthesis, Simulation and Proof-of-Concept Measured Results

机译:1.26 src =“ / images / tex / 19099.gif” alt =“ mu {rm W}”> 模拟复杂非线性哺乳动物细胞周期动力学的仿细胞IC:合成,模拟和概念验证的测量结果

获取原文
获取原文并翻译 | 示例

摘要

Cytomimetic circuits represent a novel, ultra low-power, continuous-time, continuous-value class of circuits, capable of mapping on silicon cellular and molecular dynamics modelled by means of nonlinear ordinary differential equations (ODEs). Such monolithic circuits are in principle able to emulate on chip, single or multiple cell operations in a highly parallel fashion. Cytomimetic topologies can be synthesized by adopting the Nonlinear Bernoulli Cell Formalism (NBCF), a mathematical framework that exploits the striking similarities between the equations describing weakly-inverted Metal-Oxide Semiconductor (MOS) devices and coupled nonlinear ODEs, typically appearing in models of naturally encountered biochemical systems. The NBCF maps biological state variables onto strictly positive subthreshold MOS circuit currents. This paper presents the synthesis, the simulation and proof-of-concept chip results corresponding to the emulation of a complex cellular network mechanism, the skeleton model for the network of Cyclin-dependent Kinases (CdKs) driving the mammalian cell cycle. This five variable nonlinear biological model, when appropriate model parameter values are assigned, can exhibit multiple oscillatory behaviors, varying from simple periodic oscillations, to complex oscillations such as quasi-periodicity and chaos. The validity of our approach is verified by simulated results with realistic process parameters from the commercially available AMS 0.35 technology and by chip measurements. The fabricated chip occupies an area of 2.27 and consumes a power of 1.26 from a power supply of 3 V. The presented cytomimetic topology follows closely the behavior of its biological counterpart, exhibiting similar time-dependent solutions of - he Cdk complexes, the transcription factors and the proteins.
机译:模拟细胞电路代表了一种新颖的,超低功耗,连续时间,连续值的电路,能够映射通过非线性常微分方程(ODE)建模的硅细胞和分子动力学。这样的单片电路原则上能够以高度并行的方式在芯片,单个或多个单元操作上进行仿真。可以通过采用非线性伯努利细胞形式主义(NBCF)来合成拟细胞学拓扑,该数学框架利用描述弱反相金属氧化物半导体(MOS)器件和耦合的非线性ODE的方程之间的惊人相似性,该方程通常出现在自然模型中遇到生化系统。 NBCF将生物学状态变量映射到严格的正亚阈值MOS电路电流上。本文介绍了与复杂细胞网络机制仿真相对应的合成,仿真和概念验证芯片结果,细胞周期蛋白依赖性激酶(CdKs)网络驱动哺乳动物细胞周期的骨架模型。当分配了适当的模型参数值时,这五个可变的非线性生物模型可以表现出多种振荡行为,从简单的周期性振荡到复杂的振荡(例如准周期和混沌),都有所不同。我们的方法的有效性通过仿真结果和来自商用AMS 0.35技术的实际工艺参数以及芯片测量来验证。制成的芯片占地2.27,消耗3 V电源时消耗的功率为1.26。呈现的拟细胞拓扑结构紧密遵循其生物学对应物的行为,表现出类似的时间依赖性溶液-Cdk复合物,转录因子和蛋白质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号