首页> 外文期刊>IEEE signal processing letters >Semi-Supervised Seq2seq Joint-Stochastic-Approximation Autoencoders With Applications to Semantic Parsing
【24h】

Semi-Supervised Seq2seq Joint-Stochastic-Approximation Autoencoders With Applications to Semantic Parsing

机译:半监控SEQ2Seq联合随机近似自身应用,具有语义解析

获取原文
获取原文并翻译 | 示例

摘要

Developing Semi-Supervised Seq2Seq ($S<^>4$) learning for sequence transduction tasks in natural language processing (NLP), e.g. semantic parsing, is challenging, since both the input and the output sequences are discrete. This discrete nature makes trouble for methods which need gradients either from the input space or from the output space. Recently, a new learning method called joint stochastic approximation is developed for unsupervised learning of fixed-dimensional autoencoders and theoretically avoids gradient propagation through discrete latent variables, which is suffered by Variational Auto-Encoders (VAEs). In this letter, we propose seq2seq Joint-stochastic-approximation Auto-Encoders (JAEs) and apply them to $S<^>4$ learning for NLP sequence transduction tasks. Further, we propose bi-directional JAEs (called bi-JAEs) to leverage not only unpaired input sequences (which is most commonly studied) but also unpaired output sequences. Experiments on two benchmarking datasets for semantic parsing show that JAEs consistently outperform VAEs in $S<^>4$ learning and bi-JAEs yield further improvements.
机译:开发半监督SEQ2SEQ($ S <^> 4 $)学习自然语言处理中的序列转换任务(NLP),例如,语义解析,是具有挑战性的,因为输入和输出序列都是离散的。这种离散的性质对于需要从输入空间或输出空间需要梯度的方法麻烦。最近,开发了一种新的学习方法,用于无监督的固定维度自动化器的无监督学习,并且理论上通过离散潜变量来避免梯度传播,这是由变差自动编码器(VAES)遭受的。在这封信中,我们提出了SEQ2SEQ联合随机逼近自动编码器(JAES),并将其应用于NLP序列转换任务的$ s <^> 4 $学习。此外,我们提出了双向JAE(称为Bi-Jaes),不仅杠杆效果,而不仅是未配对的输入序列(最常见的),而且是未配对的输出序列。关于语义解析的两个基准测试数据集的实验表明,JAES在$ S <^> 4 $学习和BI-JAES产生进一步的改进方面始终呈现VAE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号