首页> 外文期刊>IEEE signal processing letters >An RPCL-based approach for Markov model identification with unknown state number
【24h】

An RPCL-based approach for Markov model identification with unknown state number

机译:状态数未知的基于RPCL的马尔可夫模型识别方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an alternative identification approach for the Markov model studied in Krishnamurthy and Moore (1993). Our approach estimates the state sequence and model parameters with the help of a clustering analysis by the rival penalized competitive learning (RPCL) algorithm (Xa 1996). Compared to the method in Krishnamurthy and Moore, this new approach not only extends the model from scalar states to multidimensional ones, but also makes the model identification with the correct number of states decided automatically. The experiments have shown that it works well.
机译:本文提出了另一种识别方法,用于在Krishnamurthy和Moore(1993)中研究的Markov模型。我们的方法借助竞争性惩罚性竞争学习(RPCL)算法进行的聚类分析来估计状态序列和模型参数(Xa 1996)。与Krishnamurthy和Moore中的方法相比,这种新方法不仅将模型从标量状态扩展到多维状态,而且还可以自动确定正确的状态数,从而进行模型识别。实验表明它运作良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号