首页> 外文期刊>Control Theory & Applications, IET >Model reduction on Markovian jump systems with partially unknown transition probabilities: balanced truncation approach
【24h】

Model reduction on Markovian jump systems with partially unknown transition probabilities: balanced truncation approach

机译:转移概率部分未知的马尔可夫跳跃系统的模型约简:平衡截断法

获取原文
获取原文并翻译 | 示例

摘要

In this study, the problem of model reduction based on balancing is investigated for both discrete- and continuous-time Markovian jump linear systems with partially unknown transition probabilities. By balancing transformation, the reduced-order model with the same structure as that of the original one is obtained by truncating the balanced model. For the obtain reduced order model, stability property is preserved under simultaneous balanced truncation. An upper bound of the model reduction error is guaranteed in the sense of a perturbation operator norm. Finally, two illustrative examples are provided to show the feasibility and effectiveness of the method presented in this study.
机译:在这项研究中,研究了具有部分未知转移概率的离散时间和连续时间马尔可夫跳跃线性系统基于平衡的模型简化问题。通过平衡变换,通过截断平衡模型,可以得到结构与原始模型相同的降阶模型。对于获得的降阶模型,在同时平衡截断下保留稳定性。在扰动算子范数的意义上保证了模型简化误差的上限。最后,提供了两个说明性的例子来说明本研究中提出的方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号