首页> 外文期刊>IEEE signal processing letters >A Two-Stage Noise Level Estimation Using Automatic Feature Extraction and Mapping Model
【24h】

A Two-Stage Noise Level Estimation Using Automatic Feature Extraction and Mapping Model

机译:利用特征提取和映射模型的两阶段噪声水平估计

获取原文
获取原文并翻译 | 示例

摘要

In this letter, a two-stage noise level estimation (NLE) algorithm that jointly exploited automatic feature extraction and mapping model was proposed. In contrast to existing NLE algorithms using hand-crafted features, we first utilized convolutional neural network-based model to automatically extract the noise level-aware features (NLAFs) in form of feature vector to characterize the distortion degree of a noisy image, i.e., noise level. Then, the NLAF vector was directly mapped to its corresponding noise level via pretrained mapping model, obtaining a fast and reliable NLE algorithm. Extensive experimental results show that the proposed NLE algorithm works well for a wide range of noise levels, showing a good compromise between speed and accuracy.
机译:在本文中,提出了一种结合自动特征提取和映射模型的两阶段噪声水平估计(NLE)算法。与现有的使用手工特征的NLE算法相比,我们首先利用基于卷积神经网络的模型以特征向量的形式自动提取噪声级感知特征(NLAF),以表征噪声图像的失真度,即噪音水平。然后,通过预训练的映射模型将NLAF向量直接映射到其相应的噪声水平,从而获得了快速,可靠的NLE算法。大量的实验结果表明,所提出的NLE算法在宽范围的噪声水平下都能很好地工作,在速度和精度之间取得了很好的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号