首页> 外文期刊>IEEE signal processing letters >Deeply Supervised Face Completion With Multi-Context Generative Adversarial Network
【24h】

Deeply Supervised Face Completion With Multi-Context Generative Adversarial Network

机译:多上下文生成对抗网络的深度监督人脸完成

获取原文
获取原文并翻译 | 示例

摘要

Recent face completion works have achieved significant improvement using generative adversarial networks (GANs). There are still two important issues in this challenging task: first, semantic understanding; and second, high-frequency details prediction. In this letter, we propose a unified model by introducing multicontext structures within GANs. Our model, named multi-context generative adversarial networks (MCGAN), automatically learns the hierarchical appearances of a corrupted image and predicted the missing regions from different perspectives. In this model, semantic understanding and high-frequency details are both taken into account and modeled with two parallel networks, respectively. While one learns the semantic understanding of the input face image at a high level, the other extracts low-level features for highfrequency details prediction. Our MCGAN takes full advantage of multi-scale features learned from two complementary networks and generates semantically new pixels for the missing region with fine details. Extensive quantitative and qualitative experiments on benchmark datasets show that the proposed model outperforms several state-of-the-art models.
机译:使用生成对抗网络(GAN),最近的面部完成工作已取得了显着改善。在这项艰巨的任务中仍然存在两个重要问题:第一,语义理解;第二,语义理解。第二,高频细节预测。在这封信中,我们通过在GAN中引入多上下文结构来提出一个统一的模型。我们的模型称为多上下文生成对抗网络(MCGAN),可以自动学习损坏图像的层次外观,并从不同角度预测缺失区域。在该模型中,同时考虑了语义理解和高频细节,并分别使用两个并行网络进行了建模。一个人从高水平学习输入面部图像的语义理解,而另一个人则提取低层特征以进行高频细节预测。我们的MCGAN充分利用了从两个互补网络中学到的多尺度特征,并为缺失区域的精细细节生成了语义上新的像素。在基准数据集上进行的大量定量和定性实验表明,所提出的模型优于几种最新模型。

著录项

  • 来源
    《IEEE signal processing letters》 |2019年第3期|400-404|共5页
  • 作者单位

    Chinese Acad Sci, State Key Lab Robot, Shenyang Inst Automat, Shenyang 110016, Liaoning, Peoples R China|Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110016, Liaoning, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, State Key Lab Robot, Shenyang Inst Automat, Shenyang 110016, Liaoning, Peoples R China|Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110016, Liaoning, Peoples R China;

    Shenyang Aerosp Univ, Coll Automat, Shenyang 110136, Liaoning, Peoples R China;

    Chinese Acad Sci, State Key Lab Robot, Shenyang Inst Automat, Shenyang 110016, Liaoning, Peoples R China|Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110016, Liaoning, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Face completion; multi-context; generative adversarial network;

    机译:人脸补全;多上下文;生成对抗网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号