首页> 外文期刊>Neurocomputing >Supervised deep convolutional generative adversarial networks
【24h】

Supervised deep convolutional generative adversarial networks

机译:监督深层卷积生成的对抗网络

获取原文
获取原文并翻译 | 示例

摘要

Generative adversarial networks (GANs) are one of the most important generative network models. Using real samples, the GAN generates fake samples from the noise given as input to the network. This popular network model, which has recently emerged and consists of several variants, has different applications in many areas. Some of the studies have been implemented by applying GANs to real-world problems. Another part is aimed at improving the performance of GANs or eliminating the disadvantages observed over time. One of these studies is DCGAN. The importance of DCGAN is that it contributes significantly to balancing GAN training with its convolutional architecture. GAN and naturally DCGAN have an unsupervised network structure. While the network is informed that the samples given as input are real or fake, the category label information is not given to the network. In the present study, a method is proposed, which enables creating a supervised network structure when using multi-categories data set with DCGAN structure. The proposed method ensures that noise can be given a category label and this generated category label information can be used in the output layer. This method, which is easily applicable and effective, is named as Supervised DCGAN (SDCGAN).(c) 2021 Elsevier B.V. All rights reserved.
机译:生成的对抗网络(GANS)是最重要的生成网络模型之一。使用真实样本,GaN从作为输入到网络的输入给出的噪声产生假样本。这种流行的网络模型最近出现并由多种变体组成,在许多领域具有不同的应用。通过将GAN应用于现实世界问题,已经实施了一些研究。另一部分旨在提高GAN的性能或消除随着时间的推移观察到的缺点。其中一个研究是直接的。 DCANG的重要性是它与卷积架构平衡GAN培训有贡献。 GaN和自然DCGAN有一个无人监督的网络结构。虽然网络被通知为输入的示例是真实的或假的,但是没有给网络提供类别标签信息。在本研究中,提出了一种方法,该方法在使用具有DCGAN结构的多类数据集时,可以创建监督网络结构。所提出的方法可确保可以给出噪声标签,并且可以在输出层中使用此生成的类别标签信息。这种易于应用和有效的方法被命名为监督DCGAN(SDCGAN)。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号