首页> 外文期刊>IEEE Robotics and Automation Letters >Hierarchical Stochastic Optimization With Application to Parameter Tuning for Electronically Controlled Transmissions
【24h】

Hierarchical Stochastic Optimization With Application to Parameter Tuning for Electronically Controlled Transmissions

机译:应用于电子控制传输的参数调谐的分层随机优化

获取原文
获取原文并翻译 | 示例

摘要

In mechanical systems, control parameters are often manually tuned by an expert through trial and error, which is labor-intensive and time-consuming. In addition, the difficulty of this problem is that there often exist multiple solutions that provide high returns. As a designed objective function is often not optimal in practice, the solution that provides the highest return may not be the optimal solution. Therefore, it is often necessary to verify the multiple candidates of the solution to identify the one most suitable for the actual system. To address this issue, we propose a parameter optimization system using hierarchical stochastic optimization (HSO) that can handle multimodal objective functions. In a case study of electronically controlled transmissions, the optimizer learns multiple sets of parameters that satisfy all constraints and outperforms the parameters manually designed by human engineers. We demonstrate experimentally that our HSO can identify several modes of the objective function and is more sample-efficient than the existing methods, such as cross-entropy method and covariance matrix adaptation evolution strategy, as well as a human engineer.
机译:在机械系统中,通过试验和误差通常由专家手动调整控制参数,这是劳动密集型和耗时的。此外,这个问题的难度是通常存在多种提供高回报的解决方案。由于设计的客观函数在实践中通常不是最佳的,因此提供最高返回的解决方案可能不是最佳解决方案。因此,通常需要验证解决方案的多个候选,以识别最适合实际系统的候选。要解决此问题,我们提出了一种使用分层随机优化(HSO)的参数优化系统,可以处理多峰目标函数。在对电子控制传输的案例研究中,优化器学习多组满足所有约束的参数并优于由人工工程设计的参数。我们通过实验证明我们的HSO可以识别目标函数的几种模式,并且比现有方法更具样本,例如跨熵方法和协方差矩阵适应演化策略,以及人工工程师。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号