首页> 外文期刊>IEEE Robotics and Automation Letters >A Data-Driven Approach to Prediction and Optimal Bucket-Filling Control for Autonomous Excavators
【24h】

A Data-Driven Approach to Prediction and Optimal Bucket-Filling Control for Autonomous Excavators

机译:一种数据驱动的自主挖掘机预测和最佳桶填充控制方法

获取原文
获取原文并翻译 | 示例

摘要

We develop a data-driven, statistical control method for autonomous excavators. Interactions between soil and an excavator bucket are highly complex and nonlinear, making traditional physical modeling difficult to use for real-time control. Here, we propose a data-driven method, exploiting data obtained from laboratory tests. We use the data to construct a nonlinear, non-parametric statistical model for predicting the behavior of soil scooped by an excavator bucket. The prediction model is built for controlling the amount of soil collected with a bucket. An excavator collects soil by dragging the bucket along the soil surface and scooping the soil by rotating the bucket. It is important to switch from the drag phase to the scoop phase with the correct timing to ensure an appropriate amount of soil has accumulated in front of the bucket. We model the process as a heteroscedastic Gaussian process (GP) based on the observation that the variance of the collected soil mass depends on the scooping trajectory, i.e., the input, as well as the shape of the soil surface immediately prior to scooping. We develop an optimal control algorithm for switching from the drag phase to the scoop phase at an appropriate time and for generating a scoop trajectory to capture a desired amount of soil with high confidence. We implement the method on a robotic excavator and collect experimental data. Experiments show promising results in terms of being able to achieve a desired bucket fill factor with low variance.
机译:我们开发了一种用于自主挖掘机的数据驱动的统计控制方法。土壤和挖掘机铲斗之间的相互作用是高度复杂和非线性的,使得传统的物理模型难以用于实时控制。在这里,我们提出了一种数据驱动方法,利用实验室测试获得的数据。我们使用数据来构建非线性,非参数统计模型,以预测由挖掘机铲斗挖出的土壤的行为。建立预测模型,用于控制用桶收集的土壤量。挖掘机通过沿着土壤表面拖动铲斗来收集土壤,并通过旋转铲斗舀住土壤。重要的是用正确的定时从铲球阶段切换到勺子阶段,以确保适当的土壤积累在铲斗前积聚。基于观察到所观察到的观察,我们将该过程模拟作为异源高斯过程(GP),即收集的土壤质量的变化取决于舀取轨迹,即在挖出之前立即的土壤表面的形状。我们开发了一种在适当的时间从铲球阶段切换到勺阶段的最佳控制算法,并且用于产生勺子轨迹,以捕获高度置信度的所需量的土壤。我们在机器人挖掘机上实施方法并收集实验数据。实验表明,能够实现具有低方差的所需铲斗填充因子的有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号