首页> 外文期刊>IEEE Robotics and Automation Letters >Toward Fast and Optimal Robotic Pick-and-Place on a Moving Conveyor
【24h】

Toward Fast and Optimal Robotic Pick-and-Place on a Moving Conveyor

机译:走向移动输送机上的快速和最佳的机器人拾取器

获取原文
获取原文并翻译 | 示例

摘要

Robotic pick-and-place (PnP) operations on moving conveyors find a wide range of industrial applications. In practice, simple greedy heuristics (e.g., prioritization based on the time to process a single object) are applied that achieve reasonable efficiency. We show analytically that, under a simplified telescoping robot model, these greedy approaches do not ensure time optimality of PnP operations. To address the shortcomings of classical solutions, we develop algorithms that compute optimal object picking sequences for a predetermined finite horizon. Employing dynamic programming techniques and additional heuristics, our methods scale to up to tens to hundreds of objects. In particular, the fast algorithms we develop come with running time guarantees, making them suitable for real-time PnP applications demanding high throughput. Extensive evaluation of our algorithmic solution over dominant industrial PnP robots used in real-world applications, i.e., Delta robots and Selective Compliance Assembly Robot Arm (SCARA) robots, shows that a typical efficiency gain of around 10%-40% over greedy approaches can be realized.
机译:移动输送机上的机器人挑选(PNP)操作在各种工业应用中找到了各种工业应用。在实践中,应用简单的贪婪启发式(例如,基于处理单个对象的时间的优先级),以实现合理的效率。我们在分析上展示了,在简化的伸缩机器人模型下,这些贪婪的方法不能确保PNP操作的最优状态。为解决经典解决方案的缺点,我们开发计算预定有限范围的最佳对象拣选序列的算法。采用动态编程技术和其他启发式方法,我们的方法缩小到数十到数百个对象。特别是,我们开发的快速算法随运行时间保证,使它们适用于要求高吞吐量的实时PNP应用。广泛评估我们对现实世界应用中使用的主要工业PNP机器人的算法解决方案,即DELTA机器人和选择性合规装配机器人手臂(SCARA)机器人,表明,典型的效率增益约为10%-40%的贪婪方法可以实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号