首页> 外文期刊>IEEE Robotics and Automation Letters >Hierarchical and Safe Motion Control for Cooperative Locomotion of Robotic Guide Dogs and Humans: A Hybrid Systems Approach
【24h】

Hierarchical and Safe Motion Control for Cooperative Locomotion of Robotic Guide Dogs and Humans: A Hybrid Systems Approach

机译:机器人导盲犬与人协同运动的分层和安全运动控制:一种混合系统方法

获取原文
获取原文并翻译 | 示例

摘要

This letter presents a hierarchical control strategy based on hybrid systems theory, nonlinear control, and safety-critical systems to enable cooperative locomotion of robotic guide dogs and visually impaired people. We address high-dimensional and complex hybrid dynamical models that represent collaborative locomotion. At the high level of the control scheme, local and nonlinear controllers, based on the virtual constraints approach, are designed to induce exponentially stable dynamic gaits. The local controller for the leash is assumed to be a nonlinear controller that keeps the human in a safe distance from the dog while following it. At the lower level, a real-time quadratic programming (QP) is solved for modifying the local controllers of the robot as well as the leash to avoid obstacles. In particular, the QP framework is set up based on control barrier functions (CBFs) to compute optimal control inputs that guarantee safety while being close to the local controllers. The stability of the complex periodic gaits is investigated through the Poincar & x00E9; return map. To demonstrate the power of the analytical foundation, the control algorithms are transferred into an extensive numerical simulation of a complex model that represents cooperative locomotion of a quadrupedal robot, referred to as Vision 60, and a human model. The complex model has 16 continuous-time domains with 60 state variables and 20 control inputs.
机译:这封信提出了一种基于混合系统理论,非线性控制和安全关键系统的分层控制策略,以使机器人导盲犬和视力障碍者能够协同运动。我们解决了代表协作运动的高维复杂混合动力模型。在控制方案的高层,基于虚拟约束方法的局部和非线性控制器被设计为引起指数稳定的动态步态。皮带的本地控制器被假定为非线性控制器,该非线性控制器在跟随狗时使人与狗保持安全距离。在较低级别,解决了实时二次编程(QP),用于修改机器人的本地控制器以及牵引带以避免障碍。特别是,QP框架是基于控制屏障功能(CBF)设置的,以计算最佳控制输入,该输入可在与本地控制器接近的同时保证安全性。通过Poincar&x00E9;研究复杂的周期性步态的稳定性。返回地图。为了证明分析基础的强大功能,控制算法被转移到一个复杂模型的广泛数值模拟中,该复杂模型表示被称为Vision 60的四足机器人与人体模型的协同运动。复杂模型具有16个连续时间域,其中包含60个状态变量和20个控制输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号