首页> 外文期刊>IEEE Robotics and Automation Letters >Autonomous Parallelization of Resource-Aware Robotic Task Nodes
【24h】

Autonomous Parallelization of Resource-Aware Robotic Task Nodes

机译:资源感知机器人任务节点的自主并行化

获取原文
获取原文并翻译 | 示例

摘要

Robot task programming often leads to inefficient plans, as opportunities for parallelization and precomputation are usually not exploited by the programmer. This inefficiency is often especially obvious in mobile manipulation, where path planning and pose estimation algorithms are time-consuming operations. In this letter, we introduce the concept of resource-aware task nodes (RATNs), a powerful descriptive action model for robots. Next, we propose an algorithm that executes so-called concurrent dataflow task networks (CDTNs), robot plans consisting of RATNs. It optimizes programmed plans based on two sources of information: 1) The control flow represented in the original task plan, whose constraints are relaxed to generate opportunities for parallelization and precomputation. 2) Dependencies between actions pertaining to resources, data flows, and world model changes, the latter being equivalent to preconditions and effects. CDTNs have been integrated in our open-source task programming framework RAFCON, and we show that it leads to 11%-29% improvement in terms of execution time in two simulated mobile manipulation scenarios.
机译:机器人任务编程通常会导致计划效率低下,因为程序员通常不会利用并行化和预计算的机会。这种效率低下通常在移动操作中尤其明显,在移动操作中,路径规划和姿态估计算法是耗时的操作。在这封信中,我们介绍了资源感知任务节点(RATN)的概念,这是一种功能强大的机器人描述性动作模型。接下来,我们提出一种算法,该算法执行所谓的并发数据流任务网络(CDTN),即由RATN组成的机器人计划。它基于两个信息源来优化计划的计划:1)原始任务计划中表示的控制流,其约束被放松以产生并行化和预计算的机会。 2)与资源,数据流和世界模型更改相关的动作之间的依赖关系,后者等同于前提条件和影响。 CDTN已集成到我们的开源任务编程框架RAFCON中,我们证明在两种模拟的移动操作场景中,CDTN可以将执行时间提高11%-29%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号