首页> 外文期刊>IEEE Journal on Multiscale and Multiphysics Computational Techniques >Multiphysics Modeling of Voice Coil Actuators With Recurrent Neural Network
【24h】

Multiphysics Modeling of Voice Coil Actuators With Recurrent Neural Network

机译:递归神经网络的音圈驱动器的多物理场建模

获取原文
获取原文并翻译 | 示例

摘要

In order to accurately model the behaviors of a voice coil actuator (VCA), the three-dimensional (3-D) method is preferred over a lumped model. However, building a 3-D model of a VCA is often very computationally expensive. The computation efficiency can be limited by the spatial discretization, the multiphysics nature, and the nonlinearities of the VCA. In this paper, we propose incorporating the recurrent neural network (RNN) into the multiphysics simulation to enhance its computation efficiency. In the proposed approach, the multiphysics problem is first solved with the finite element method (FEM) at full 3-D accuracy within a portion of the required time steps. An RNN is then trained and validated with the obtained transient solutions. Once the training completes, the RNN can make predictions on the transient behaviors of the VCA in the remaining portion of the required time steps. With the proposed approach, it avoids solving the 3-D multiphysics problem at all time steps such that a significant reduction of computation time can be achieved. The training cost of the RNN model can be amortized when a longer duration of transient behaviors is required. A loudspeaker example is used to demonstrate the enhancement of the computation efficiency by using RNN in the multiphysics modeling. Various structures of neural networks and tunable parameters are investigated with the numerical example in order to optimize the performance of the RNN model.
机译:为了准确地建模音圈致动器(VCA)的行为,与集总模型相比,优选使用三维(3-D)方法。然而,建立VCA的3-D模型通常在计算上非常昂贵。计算效率会受到空间离散,多物理场性质和VCA非线性的限制。在本文中,我们建议将递归神经网络(RNN)纳入多物理场仿真中以提高其计算效率。在提出的方法中,多物理场问题首先通过有限元方法(FEM)在部分所需时间步长内以完全3-D精度解决。然后使用获得的瞬态解对RNN进行训练和验证。训练完成后,RNN可以在所需时间步长的其余部分中预测VCA的瞬态行为。使用所提出的方法,它避免了在所有时间步上解决3-D多物理场问题,从而可以显着减少计算时间。当需要较长时间的瞬态行为时,可以分摊RNN模型的训练成本。一个扬声器示例被用来演示在多物理场建模中使用RNN来提高计算效率。通过数值示例研究了神经网络的各种结构和可调参数,以优化RNN模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号