首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Supervised Segmentation of Very High Resolution Images by the Use of Extended Morphological Attribute Profiles and a Sparse Transform
【24h】

Supervised Segmentation of Very High Resolution Images by the Use of Extended Morphological Attribute Profiles and a Sparse Transform

机译:通过使用扩展的形态属性配置文件和稀疏变换对超高分辨率图像进行有监督的分割

获取原文
获取原文并翻译 | 示例

摘要

In this letter, a novel supervised segmentation technique based on sparsely representing the stacked extended morphological attribute profiles (EAPs) and maximum a posteriori probability (MAP) is presented for very high resolution (VHR) images. Attribute profiles (APs), which are extracted by using several attributes, are applied to the multispectral VHR image, leading to a set of extended EAPs. Using the sparse prior of representing the pixel with all training samples, the extended multi-AP (EMAP) feature stacked by the EAP features is transformed into a class-dependent residual feature, which can be normalized as a posterior probability distribution of the pixel. A graph-cut approach is utilized to segment the image scene and obtain the final classification result. Experiments were conducted on IKONOS and WorldView-2 data sets. Compared with SVM, object-oriented SVM with majority voting, and some other state-of-the-art methods, the proposed method shows stable and effective results.
机译:在这封信中,针对超高分辨率(VHR)图像,提出了一种基于稀疏表示堆叠的扩展形态属性配置文件(EAP)和最大后验概率(MAP)的新颖监督分割技术。通过使用多个属性提取的属性配置文件(AP)应用于多光谱VHR图像,从而生成了一组扩展EAP。使用用所有训练样本表示像素的稀疏先验,将由EAP特征堆叠的扩展多AP(EMAP)特征转换为依赖于类的残差特征,可以将其标准化为像素的后验概率分布。图切方法被用来分割图像场景并获得最终的分类结果。在IKONOS和WorldView-2数据集上进行了实验。与支持向量机,具有多数表决权的面向对象支持向量机以及其他一些最新方法相比,该方法显示了稳定有效的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号