首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Two-Level Feature Representation for Aerial Scene Classification
【24h】

Two-Level Feature Representation for Aerial Scene Classification

机译:空中场景分类的两级特征表示

获取原文
获取原文并翻译 | 示例

摘要

Effective scene representation is a fundamental part of high-resolution scene classification systems. In this letter, we present a holistic scene representation method, i.e., the two-level feature representation (TLFR) model. The TLFR is composed of low-level and high-level features. Low-level features are obtained by computing the residual error between a local descriptor and its corresponding visual word, and the high-level features are obtained using a proposed selection-constrained sparse coding method. In addition, low-level features in a cluster are integrated by summation pooling, whereas high-level features are fused by maximization pooling. The holistic scene representation is finally generated by incorporating these two levels of features into the bag-of-visual-words framework. Experimental results show that the TLFR model is robust to translation and rotation variations and demonstrates promising performance with the Land Use and Land Cover Database data set and a newly released Singapore data set.
机译:有效的场景表示是高分辨率场景分类系统的基本组成部分。在这封信中,我们介绍了一种整体场景表示方法,即两级特征表示(TLFR)模型。 TLFR由低级和高级功能组成。通过计算局部描述符与其对应的可视单词之间的残差,可以获得低级特征,而使用提出的选择约束的稀疏编码方法可以获得高级特征。此外,群集中的低级功能通过求和池进行集成,而高级功能通过最大化池进行融合。最终,通过将这两个级别的功能合并到“视觉包”框架中来生成整体场景表示。实验结果表明,TLFR模型对于平移和旋转变化具有鲁棒性,并在土地利用和土地覆盖数据库数据集以及新发布的新加坡数据集中显示出令人鼓舞的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号