首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Attention GANs: Unsupervised Deep Feature Learning for Aerial Scene Classification
【24h】

Attention GANs: Unsupervised Deep Feature Learning for Aerial Scene Classification

机译:注意GANS:空中场景分类的无监督深度特色学习

获取原文
获取原文并翻译 | 示例

摘要

With the development of deep learning, supervised feature learning methods have achieved prominent performance in the field of aerial scene classification. However, supervised feature learning methods require a large amount of labeled training data. To address this limitation, in this article, a novel unsupervised deep feature learning method, namely, Attention generative adversarial networks (Attention GANs), is proposed for aerial scene classification. First, Attention GANs integrates the attention mechanism into GANs to enhance the representation power of the discriminator. Then, to obtain contextual information, a context-aggregation-based feature fusion architecture is designed in the discriminator. Furthermore, the generator and discriminator losses are improved on basis of the Relativistic GAN. At the same time, a content loss is formed by using the feature representations from the context-aggregation-based feature fusion architecture. In the experiments, our Attention GANs is evaluated via comprehensive experiments with four publicly available remote sensing scene data sets, i.e., the UC-Merced data set with 21 scene classes, the RSSCN7 data set with 7 scene classes, the AID data set with 30 scene classes, and the NWPU-RESISC45 data set with 45 scene classes. Experimental results demonstrate that our Attention GANs can obtain the best performance compared with the state-of-the-art methods.
机译:随着深度学习的发展,监督特征学习方法在空中场景分类领域取得了突出的性能。但是,监督特征学习方法需要大量标记的训练数据。为了解决这一限制,在本文中,提出了一种小型无监督的深度特征学习方法,即注意生成的对抗网络(注意GANS),用于空中场景分类。首先,注意GANS将注意力机制整合到GAN中,以增强鉴别器的表示力。然后,为了获得上下文信息,在鉴别器中设计了基于上下文聚合的特征融合体系结构。此外,在相对论的GaN的基础上改善了发电机和鉴别器损耗。同时,通过使用基于上下文聚合的特征融合架构来形成内容丢失。在实验中,我们的注意GAN通过具有四个公开可用的遥感场景数据集的全面实验来评估,即使用21场景类的UC-Merced数据集,具有7个场景类的RSSCN7数据集,辅助数据设置为30场景类,以及NWPU-RESISC45数据集,具有45个场景类。实验结果表明,与最先进的方法相比,我们的注意力导致可以获得最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号