首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Unsupervised Multilayer Feature Learning for Satellite Image Scene Classification
【24h】

Unsupervised Multilayer Feature Learning for Satellite Image Scene Classification

机译:卫星图像场景分类的无监督多层特征学习

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a simple but effective approach to automatically learn a multilayer image feature for satellite image scene classification. Different from the hand-crafted features which are empirically designed but lack high generalization ability, the proposed approach can autonomously extract the data-dependent feature. The presented feature extraction algorithm is composed of two layers, and the bases of these two layers are uniformly learned by a plain -means clustering algorithm. Coincidentally, the feature extraction performance of the aforementioned two layers is consistent with visual processing of human visual cortex. More specifically, the first layer can generate edgelike bases, which are analogous to the neuron responses of primary visual cortex (V1), and the second layer can produce cornerlike bases, which resemble the neuron responses of visual extrastriate cortical area two (V2). The proposed feature extraction approach can automatically extract not only simple structure features (e.g., edges) but also complex structure features (e.g., corners and junctions). The learned feature is further discriminated by the linear support vector machine classifier for scene classification. In order to fairly demonstrate the validity of the proposed feature extraction approach, its satellite image scene classification performance is evaluated on the public UCM-21 data set. Experimental results show that the proposed approach can outperform several recent state-of-the-art approaches.
机译:这封信提出了一种简单而有效的方法来自动学习用于卫星图像场景分类的多层图像特征。与经验设计的手工特征不同,该方法缺乏通用性,但可以自动提取与数据相关的特征。提出的特征提取算法由两层组成,并通过平均值聚类算法统一学习这两层的基础。巧合的是,上述两层的特征提取性能与人视觉皮层的视觉处理是一致的。更具体地说,第一层可以产生类似于初级视觉皮层(V1)的神经元反应的边缘状碱基,第二层可以产生类似于角质层皮层第二区(V2)的神经元反应的角状碱基。提出的特征提取方法不仅可以自动提取简单的结构特征(例如,边缘),还可以自动提取复杂的结构特征(例如,角和交点)。所学习的特征通过用于场景分类的线性支持向量机分类器进一步区分。为了公平地证明所提出的特征提取方法的有效性,在公共UCM-21数据集上评估了其卫星图像场景分类性能。实验结果表明,提出的方法可以胜过几种最新的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号