首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Automatic and Fast PCM Generation for Occluded Object Detection in High-Resolution Remote Sensing Images
【24h】

Automatic and Fast PCM Generation for Occluded Object Detection in High-Resolution Remote Sensing Images

机译:自动和快速PCM生成,用于高分辨率遥感影像中的遮挡物检测

获取原文
获取原文并翻译 | 示例

摘要

Partial configuration model (PCM) is an occluded object detection method in high-resolution remote sensing images (HR-RSIs) based on the deformable part-based model (DPM). However, it needs extra category predefinition, considerable partlevel annotation, and repeated multimodel training. In this letter, an automatic and fast PCM generation method is proposed based on a novel part sharing mechanism. We propose to share parts from one trained DPM model (tDPM) among different models of partial configurations (PCs) to address the above problems. PCs are first designed according to part anchors of tDPM. The model is then generated through corresponding parts selection, root coverage cropping, and elements reweighing. This method avoids the need for manual category predefinition and partlevel annotation, while largely reducing the computation of PCM training. Experimental results on three HR-RSI data sets show that the proposed method obtains a training speedup of 6.7× and 2× for each PC of airplane and ship categories, while achieving a comparable accuracy compared with PCM.
机译:部分配置模型(PCM)是基于可变形基于零件的模型(DPM)在高分辨率遥感影像(HR-RSI)中进行遮挡的对象检测方法。但是,它需要额外的类别预定义,大量的零件级注释和重复的多模型训练。在本文中,提出了一种基于新型零件共享机制的自动快速PCM生成方法。我们建议在部分配置(PC)的不同模型之间共享来自一个受过训练的DPM模型(tDPM)的零件,以解决上述问题。首先根据tDPM的部分锚点设计PC。然后通过相应的零件选择,根覆盖裁剪和元素重称来生成模型。该方法避免了手动类别预定义和零件级注释的需要,同时大大减少了PCM训练的计算。在三个HR-RSI数据集上的实验结果表明,该方法对飞机和舰船类别的每台PC分别获得了6.7倍和2倍的训练速度,同时与PCM相比具有可比的精度。

著录项

  • 来源
    《IEEE Geoscience and Remote Sensing Letters》 |2017年第10期|1730-1734|共5页
  • 作者单位

    Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, Changsha, China;

    Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, Changsha, China;

    College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China;

    Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, Changsha, China;

    Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, Changsha, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Phase change materials; Semantics; Training; Object detection; Indexes; Remote sensing; Manuals;

    机译:相变材料语义训练目标检测指标遥感手册;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号