首页> 外文OA文献 >Unified Partial Configuration Model Framework for Fast Partially Occluded Object Detection in High-Resolution Remote Sensing Images
【2h】

Unified Partial Configuration Model Framework for Fast Partially Occluded Object Detection in High-Resolution Remote Sensing Images

机译:高分辨率遥感图像中快速部分闭塞对象检测的统一部分配置模型框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Partially occluded object detection (POOD) has been an important task for both civil and military applications that use high-resolution remote sensing images (HR-RSIs). This topic is very challenging due to the limited object evidence for detection. Recent partial configuration model (PCM) based methods deal with occlusion yet suffer from the problems of massive manual annotation, separate parameter learning, and low training and detection efficiency. To tackle this, a unified PCM framework (UniPCM) is proposed in this paper. The proposed UniPCM adopts a part sharing mechanism which directly shares the root and part filters of a deformable part-based model (DPM) among different partial configurations. It largely reduces the convolution overhead during both training and detection. In UniPCM, a novel DPM deformation deviation method is proposed for spatial interrelationship estimation of PCM, and a unified weights learning method is presented to simultaneously obtain the weights of elements within each partial configuration and the weights between partial configurations. Experiments on three HR-RSI datasets show that the proposed UniPCM method achieves a much higher training and detection efficiency for POOD compared with state-of-the-art PCM-based methods, while maintaining a comparable detection accuracy. UniPCM obtains a training speedup of maximal 10× and 2.5× for airplane and ship, and a detection speedup of maximal 7.2×, 4.1× and 2.5× on three test sets, respectively.
机译:部分闭塞对象检测(POCE)是使用高分辨率遥感图像(HR-RSIS)的民用和军事应用的重要任务。由于有限的检测物证据,这一主题非常具有挑战性。最近的基于部分配置模型(PCM)的方法处理遮挡且遭受巨大手动注释,单独参数学习和低训练和检测效率的问题。为了解决这个问题,本文提出了一个统一的PCM框架(UniPCM)。建议的unipcm采用零件共享机制,该机制直接与不同的部分配置之间直接分享可变形零件的模型(DPM)的根和部分过滤器。它在很大程度上在训练和检测期间减少了卷积开销。在unipcm中,提出了一种用于PCM的空间相互关系估计的新型DPM变形偏差方法,并且提出了一种统一的权重学习方法,同时获得每个部分配置内的元件的重量和部分配置之间的重量。三个HR-RSI数据集的实验表明,与最先进的PCM的方法相比,拟议的unipcm方法对Poog的培训和检测效率达到了更高的训练和检测效率,同时保持了可比的检测精度。 unipcm为飞机和船舶获得最大10×和2.5倍的训练加速,以及三个测试集的最大7.2×,4.1×和2.5×的检测加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号