首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Cosegmentation for Object-Based Building Change Detection From High-Resolution Remotely Sensed Images
【24h】

Cosegmentation for Object-Based Building Change Detection From High-Resolution Remotely Sensed Images

机译:从高分辨率遥感影像中进行基于对象的建筑物变化检测的细分

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a cosegmentation-based method for building change detection from multitemporal high-resolution (HR) remotely sensed images, providing a new solution to object-based change detection (OBCD). First, the magnitude of a difference image is calculated to represent the change feature. Next, cosegmentation is performed via graph-based energy minimization by combining the change feature with image features at each phase, directly resulting in foreground as multitemporal changed objects and background as unchanged area. Finally, the spatial correspondence between changed objects is established through overlay analysis. Cosegmentation provides a separate and associated, rather than a separate and independent, multitemporal image segmentation method for OBCD, which has two advantages: 1) both the image and change features are used to produce foreground segments as changed objects, which can take full advantage of multitemporal information and produce two spatially corresponded change detection maps by the association of the change feature, having the ability to reveal the thematic, geometric, and numeric changes of objects and 2) the background in the cosegmentation result represents the unchanged area, which naturally avoids the problem of matching inconsistent unchanged objects caused by the separate and independent multitemporal segmentation strategy. Experimental results on five HR datasets verify the effectiveness of the proposed method and the comparisons with the state-of-the-art OBCD methods further show its superiority.
机译:本文提出了一种基于细分的方法,用于从多时间高分辨率(HR)遥感图像中进行变化检测,为基于对象的变化检测(OBCD)提供了新的解决方案。首先,计算差异图像的大小以表示变化特征。接下来,通过在每个阶段将变化特征与图像特征结合起来,通过基于图的能量最小化来进行细分,直接导致前景为多时间变化对象,背景为不变区域。最后,通过覆盖分析建立了变化对象之间的空间对应关系。 Cosegmentation为OBCD提供了一种单独的,关联的而不是单独的,独立的多时间图像分割方法,该方法具有两个优点:1)图像和更改特征均用于生成前景段作为更改的对象,可以充分利用以下优点:多时相信息,并通过变化特征的关联生成两个空间对应的变化检测图,具有揭示对象的主题,几何和数字变化的能力; 2)细分结果中的背景表示未更改的区域,自然可以避免分离和独立的多时间分割策略所引起的匹配不一致的不变对象的问题。在五个HR数据集上的实验结果证明了该方法的有效性,并且与最新的OBCD方法的比较进一步证明了其优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号