首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Discriminative Adaptation Regularization Framework-Based Transfer Learning for Ship Classification in SAR Images
【24h】

Discriminative Adaptation Regularization Framework-Based Transfer Learning for Ship Classification in SAR Images

机译:基于区分适应正则化框架的舰船SAR图像转移学习

获取原文
获取原文并翻译 | 示例

摘要

Ship classification in synthetic-aperture radar (SAR) images is of great significance for dealing with various marine matters. Although traditional supervised learning methods have recently achieved dramatic successes, but they are limited by the insufficient labeled training data. This letter presents a novel unsupervised domain adaptation (DA) method, termed as discriminative adaptation regularization framework-based transfer learning (D-ARTL), to address the problem in case that there is no labeled training data available at all in the SAR image domain, i.e., target domain (TD). D-ARTL improves the original ARTL by adding a novel source discriminative information preservation (SDIP) regularization term. This improvement achieves an efficient transfer of interclass discriminative ability from source domain (SD) to TD, while achieving the alignment of cross-domain distributions. Extensive experiments have verified that D-ARTL outperforms state-of-the-art methods on the task of ship classification in SAR images by transferring the automatic identification system (AIS) information.
机译:合成孔径雷达(SAR)图像中的船舶分类对于处理各种海洋问题具有重要意义。尽管传统的监督学习方法最近取得了巨大的成功,但是它们受到标签训练数据不足的限制。这封信提出了一种新颖的无监督域自适应(DA)方法,称为基于判别自适应正则化框架的转移学习(D-ARTL),以解决SAR图像域中根本没有可用的标记训练数据的情况,即目标域(TD)。 D-ARTL通过添加新颖的源判别信息保存(SDIP)正则化术语来改进原始ARTL。此改进实现了类间判别能力从源域(SD)到TD的有效转移,同时实现了跨域分布的对齐。大量实验证明,通过传输自动识别系统(AIS)信息,D-ARTL在SAR图像中的舰船分类任务方面优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号