首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Transfer Learning for SAR Image Classification Via Deep Joint Distribution Adaptation Networks
【24h】

Transfer Learning for SAR Image Classification Via Deep Joint Distribution Adaptation Networks

机译:通过深关节分布适应网络转移SAR图像分类的学习

获取原文
获取原文并翻译 | 示例

摘要

The problem of different characters of heterogeneous synthetic aperture radar (SAR) images leads to poor performances for transfer learning of SAR image classification. To address this issue, a semisupervised model named as deep joint distribution adaptation networks (DJDANs) is proposed for transfer learning from a source SAR image to a different but similar target SAR image, which aims to match the joint probability distributions between the source domain and target domain. In the proposed DJDAN, a marginal distribution adaptation network is developed to map features across the domains into an augmented common feature subspace, which aims to match the marginal probability distributions and unify the dimensions. Then, a conditional distribution adaptation network is proposed to transfer knowledge across the domains, which aims to reduce the discrepancies of the conditional probability distributions and enhance the effectiveness of feature representation. Moreover, one-versus-rest classification is utilized in the proposed framework, which aims to improve the discrimination between the inside and outside class. Experimental results demonstrate the effectiveness of the proposed deep networks.
机译:异构合成孔径雷达(SAR)图像不同特征的问题导致SAR图像分类转移学习的性能差。为了解决这个问题,提出了一个名为Deep接口分布适应网络(DJDANs)的半体验模型,用于将从源SAR图像转移到不同但类似的目标SAR图像,该图像旨在匹配源域之间的联合概率分布和目标域名。在所提出的DJDAN中,开发了一个边缘分布适应网络,以将域映射到一个增强的常见特征子空间,旨在匹配边际概率分布并统一尺寸。然后,提出了一种条件分布适应网络以在域中传输知识,其旨在降低条件概率分布的差异并增强特征表示的有效性。此外,在所提出的框架中利用一个与休息分类,旨在改善内部和外部阶级之间的歧视。实验结果表明了建议的深网络的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号