首页> 外文OA文献 >Ideal Regularized Discriminative Multiple Kernel Subspace Alignment for Domain Adaptation in Hyperspectral Image Classification
【2h】

Ideal Regularized Discriminative Multiple Kernel Subspace Alignment for Domain Adaptation in Hyperspectral Image Classification

机译:高光谱图像分类中的域适应域适应的理想正常判别多核子空间对齐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article proposes a novel unsupervised domain adaptation (DA) method called ideal regularized discriminative multiple kernel subspace alignment (IRDMKSA) for hyperspectral image (HSI) classification. The proposed IRDMKSA method includes three main steps: ideal regularization, discriminative multiple kernel learning, and subspace alignment. The ideal regularization strategy exploits label information of source domain to refine the standard source and target kernels and also to build a connection between them. The discriminative multiple kernel learning can learn a composite kernel to describe the nonlinearity of HSI samples by fusing complementary information among different single kernels. Finally, the subspace alignment is used to diminish the difference between source and target composite kernels. The proposed IRDMKSA method exploits both the sample similarity and label similarity and makes the resulting kernel more appropriate for DA tasks. Experimental results on four DA tasks show that the performance of IRDMKSA is better than some classical unsupervised DA methods for the HSI classification.
机译:本文提出正规化判别多个内核子空间对准(IRDMKSA),用于超谱图像(HSI)分类的新型无监督域适配(DA)方法称为理想。提出的IRDMKSA方法包括三个主要步骤:理想的正则化,识别多个内核学习和子空间对齐。理想的正则化策略利用源域的标签信息来优化标准源和目标内核,并在它们之间构建连接。判别多个内核学习可以学习复合内核,通过融合不同单核之间的互补信息来描述HSI样本的非线性。最后,子空间对齐用于减小源和目标复合核之间的差异。该提议的IRDMKSA方法利用样本相似性和标签相似性,并使生成的内核更适合DA任务。四个DA任务的实验结果表明,IRDMKSA的性能优于HSI分类的一些经典无监督的DA方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号