首页> 外文期刊>IEEE/ACM Transactions on Networking >Estimating point-to-point and point-to-multipoint traffic matrices: an information-theoretic approach
【24h】

Estimating point-to-point and point-to-multipoint traffic matrices: an information-theoretic approach

机译:估计点对点和点对多点流量矩阵:一种信息理论方法

获取原文
获取原文并翻译 | 示例

摘要

Traffic matrices are required inputs for many IP network management tasks, such as capacity planning, traffic engineering, and network reliability analysis. However, it is difficult to measure these matrices directly in large operational IP networks, so there has been recent interest in inferring traffic matrices from link measurements and other more easily measured data. Typically, this inference problem is ill-posed, as it involves significantly more unknowns than data. Experience in many scientific and engineering fields has shown that it is essential to approach such ill-posed problems via "regularization". This paper presents a new approach to traffic matrix estimation using a regularization based on "entropy penalization". Our solution chooses the traffic matrix consistent with the measured data that is information-theoretically closest to a model in which source/destination pairs are stochastically independent. It applies to both point-to-point and point-to-multipoint traffic matrix estimation. We use fast algorithms based on modern convex optimization theory to solve for our traffic matrices. We evaluate our algorithm with real backbone traffic and routing data, and demonstrate that it is fast, accurate, robust, and flexible.
机译:流量矩阵是许多IP网络管理任务(例如容量规划,流量工程和网络可靠性分析)所需的输入。但是,很难在大型可操作IP网络中直接测量这些矩阵,因此,最近有兴趣从链路测量和其他更容易测量的数据中推断流量矩阵。通常,这种推理问题是不适当的,因为它涉及的未知数比数据要多得多。许多科学和工程领域的经验表明,通过“规范化”解决此类不适的问题至关重要。本文提出了一种基于“熵惩罚”的正则化流量矩阵估计的新方法。我们的解决方案选择与信息理论上最接近源/目的地对是随机独立的模型的测量数据一致的流量矩阵。它适用于点对点和点对多点流量矩阵估计。我们使用基于现代凸优化理论的快速算法来解决我们的流量矩阵。我们用真实的骨干网流量和路由数据评估我们的算法,并证明它是快速,准确,健壮和灵活的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号