首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >A Fast Algorithm for Computing Geodesic Distances in Tree Space
【24h】

A Fast Algorithm for Computing Geodesic Distances in Tree Space

机译:树空间中测地距离的快速算法

获取原文
获取原文并翻译 | 示例

摘要

Comparing and computing distances between phylogenetic trees are important biological problems, especially for models where edge lengths play an important role. The geodesic distance measure between two phylogenetic trees with edge lengths is the length of the shortest path between them in the continuous tree space introduced by Billera, Holmes, and Vogtmann. This tree space provides a powerful tool for studying and comparing phylogenetic trees, both in exhibiting a natural distance measure and in providing a euclidean-like structure for solving optimization problems on trees. An important open problem is to find a polynomial time algorithm for finding geodesics in tree space. This paper gives such an algorithm, which starts with a simple initial path and moves through a series of successively shorter paths until the geodesic is attained.
机译:比较和计算系统发育树之间的距离是重要的生物学问题,尤其是对于边长起着重要作用的模型。具有边缘长度的两个系统发育树之间的测地距离度量是Billera,Holmes和Vogtmann引入的连续树空间中它们之间最短路径的长度。这个树空间提供了一个强大的工具,用于研究和比较系统树,既可以显示自然距离,又可以提供类似欧几里德的结构来解决树上的优化问题。一个重要的开放性问题是找到用于在树空间中找到测地线的多项式时间算法。本文给出了这样一种算法,该算法从一条简单的初始路径开始,然后经过一系列连续较短的路径,直到达到测地线为止。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号