首页> 外文学位 >Fast methods for computing all-to-all geodesic paths for the Eikonal equation.
【24h】

Fast methods for computing all-to-all geodesic paths for the Eikonal equation.

机译:快速计算Eikonal方程的全部到全部测地路径的方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the Geodesic Path-Switching algorithm, a method for solving an all-to-all shortest path problem in a continuous region. Given a domain and a metric, the goal is to compute the shortest geodesic path between a collection of points given in the domain. The metric can be thought of as a cost function defined at every point in space, and the actual paths and cost must be computed. For every pair of starting and end points, the path corresponds to the solution of the Eikonal equation for a wave starting at the source and ending at the end point.;The algorithm presented is a dynamic programming method. At its core, it exploits methods borrowed from discrete graph theory to compute the solution to our continuous problem. We find shortest paths in subproblems, then use those paths as segments of a different shortest path. This method can be used to find path lengths for the shortest path between multiple pairs of endpoints. The algorithm also produces the position of an approximate path.;The path length is the time it takes to traverse the path, according to a known, position dependent speed function. We place a simple rectangular mesh on the region, which provides a graph-like setting for the problem. We apply concepts of methods used to solve the all-to-all shortest path problem on a graph to our continuous setting.;Floyd's algorithm is a method for solving the shortest path problem on a graph. It compares currently known paths to new paths made by joining two paths, one each from our original endpoints to a third node. Upon completion of the algorithm, we have shortest path lengths and the actual shortest paths for every pair of nodes in the graph.;In the continuous setting, mesh points play a similar role as the nodes in the graph setting. They describe endpoints of paths, and they determine regions through which we describe potential new shortest paths. The cell boundaries describe edges. A significant difference between the graph problem and the continuous problem is the potential paths whose length we seek to minimize. On a graph, paths may be made only from existing edges on the graph. In the continuous region, paths may pass through any point in the region.;We present a method for minimizing patty that intersect some small subregion at some point. We construct contours of known path lengths to determine the length of shortest paths made by joining together two paths at some point within that subregion. The dynamic programming principle of Floyd's algorithm motivates our method for comparing paths in order to find the shortest path. We use the upwind update procedure from the Fast Marching method to calculate path lengths for a small region.;The Geodesic Path-Switching algorithm produces shortest path lengths for every pair of mesh points. The algorithm may be slightly modified as to record a predecessor edge for each pair of mesh points. This is the last edge visited prior to reaching the destination node of the shortest path. Upon completion of the algorithm, we use this information to work backward along the series of edges through which the shortest path passes.;At every stage in the algorithm, we have a current shortest path for each pair of mesh points. This is the shortest path we have located to that point in the algorithm. When we find a shorter path, we adopt this as our new shortest path. As a result, there are paths present at each step of Geodesic Path-Switching method. This provides alternate paths for problems which allow suboptimal paths.
机译:本文提出了测地线路径转换算法,该方法可以解决连续区域中所有路径的最短路径问题。给定一个域和一个度量,目标是计算域中给定点集合之间的最短测地路径。可以将度量视为在空间中每个点定义的成本函数,并且必须计算实际路径和成本。对于每对起点和终点,路径对应于从源头开始到终点的波的Eikonal方程的解。提出的算法是一种动态规划方法。它的核心是利用从离散图论那里借来的方法来计算我们连续问题的解决方案。我们在子问题中找到最短路径,然后将这些路径用作其他最短路径的分段。此方法可用于查找多对端点之间的最短路径的路径长度。该算法还会生成近似路径的位置。根据已知的位置相关速度函数,路径长度是遍历路径所花费的时间。我们在该区域上放置一个简单的矩形网格,从而为问题提供了类似图形的设置。我们将用于解决图上所有最短路径的方法的概念应用于我们的连续设置。弗洛伊德算法是解决图上最短路径问题的方法。它将当前已知的路径与通过合并两个路径(从我们的原始端点到第三个节点各一个)连接而成的新路径进行比较。算法完成后,图中的每对节点都有最短的路径长度和实际的最短路径。在连续设置中,网格点的作用与图中设置的节点相似。它们描述路径的端点,并确定我们描述潜在的新的最短路径的区域。单元边界描述边缘。图问题和连续问题之间的显着区别是我们试图最小化其长度的潜在路径。在图上,只能从图上的现有边建立路径。在连续区域中,路径可能会穿过该区域中的任何点。我们提出了一种使在某个点处与某个小子区域相交的肉饼最小化的方法。我们构造已知路径长度的轮廓,以确定通过在该子区域内的某个点将两条路径连接在一起而形成的最短路径的长度。 Floyd算法的动态编程原理激发了我们比较路径以找到最短路径的方法。我们使用快速行进方法中的逆风更新过程来计算小区域的路径长度。测地线路径切换算法会为每对网格点生成最短的路径长度。可以对算法进行一些修改,以记录每对网格点的前沿。这是到达最短路径的目标节点之前访问的最后一条边。算法完成后,我们将使用此信息沿最短路径通过的一系列边沿向后工作。在算法的每个阶段,每对网格点都有一条当前最短路径。这是我们在算法中找到该点的最短路径。当我们找到一条较短的路径时,我们将其作为新的最短路径。结果,在测地线路径切换方法的每个步骤中都存在路径。这为存在次优路径的问题提供了替代路径。

著录项

  • 作者

    Chester, Elizabeth Jenny.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Geodesy.;Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号