首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Using GPUs for the Exact Alignment of Short-Read Genetic Sequences by Means of the Burrows-Wheeler Transform
【24h】

Using GPUs for the Exact Alignment of Short-Read Genetic Sequences by Means of the Burrows-Wheeler Transform

机译:使用GPU通过Burrows-Wheeler变换对短读遗传序列进行精确比对

获取原文
获取原文并翻译 | 示例

摘要

General Purpose Graphic Processing Units (GPGPUs) constitute an inexpensive resource for computing-intensive applications that could exploit an intrinsic fine-grain parallelism. This paper presents the design and implementation in GPGPUs of an exact alignment tool for nucleotide sequences based on the Burrows-Wheeler Transform. We compare this algorithm with state-of-the-art implementations of the same algorithm over standard CPUs, and considering the same conditions in terms of I/O. Excluding disk transfers, the implementation of the algorithm in GPUs shows a speedup larger than 12{times}, when compared to CPU execution. This implementation exploits the parallelism by concurrently searching different sequences on the same reference search tree, maximizing memory locality and ensuring a symmetric access to the data. The paper describes the behavior of the algorithm in GPU, showing a good scalability in the performance, only limited by the size of the GPU inner memory.
机译:通用图形处理单元(GPGPU)为计算密集型应用程序提供了廉价资源,这些应用程序可以利用固有的细粒度并行性。本文介绍了基于Burrows-Wheeler变换的核苷酸序列精确比对工具的设计和在GPGPU中的实现。我们将该算法与标准CPU上相同算法的最新实现方案进行了比较,并在I / O方面考虑了相同条件。与磁盘执行相比,不包括磁盘传输,该算法在GPU中的实现实现了大于12倍的加速。此实现通过并行搜索同一参考搜索树上的不同序列,最大化内存局部性并确保对数据的对称访问来利用并行性。本文介绍了该算法在GPU中的行为,显示了良好的性能可扩展性,仅受GPU内部存储器的大小限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号