首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >BM-SNP: A Bayesian Model for SNP Calling Using High Throughput Sequencing Data
【24h】

BM-SNP: A Bayesian Model for SNP Calling Using High Throughput Sequencing Data

机译:BM-SNP:使用高吞吐量测序数据进行SNP调用的贝叶斯模型

获取原文
获取原文并翻译 | 示例

摘要

A single-nucleotide polymorphism (SNP) is a sole base change in the DNA sequence and is the most common polymorphism. Detection and annotation of SNPs are among the central topics in biomedical research as SNPs are believed to play important roles on the manifestation of phenotypic events, such as disease susceptibility. To take full advantage of the next-generation sequencing (NGS) technology, we propose a Bayesian approach, BM-SNP, to identify SNPs based on the posterior inference using NGS data. In particular, BM-SNP computes the posterior probability of nucleotide variation at each covered genomic position using the contents and frequency of the mapped short reads. The position with a high posterior probability of nucleotide variation is flagged as a potential SNP. We apply BM-SNP to two cell-line NGS data, and the results show a high ratio of overlap ( percent) with the dbSNP database. Compared with MAQ, BM-SNP identifies more SNPs that are in dbSNP, with higher quality. The SNPs that are called only by BM-SNP but not in dbSNP may serve as new discoveries. The proposed BM-SNP method integrates information from multiple aspects of NGS data, and therefore achieves high detection power. BM-SNP is fast, capable of processing whole genome data at 20-fold average coverage in a short amount of time.
机译:单核苷酸多态性(SNP)是DNA序列中唯一的碱基变化,是最常见的多态性。 SNP的检测和注释是生物医学研究的中心主题,因为据信SNP在表型事件(例如疾病易感性)的表现中起重要作用。为了充分利用下一代测序(NGS)技术,我们提出了一种贝叶斯方法BM-SNP,以使用NGS数据基于后验来识别SNP。尤其是,BM-SNP使用映射的短读的内容和频率计算每个覆盖的基因组位置的核苷酸变异的后验概率。具有较高核苷酸变异后验概率的位置被标记为潜在的SNP。我们将BM-SNP应用于两个细胞系NGS数据,结果表明dbSNP数据库具有很高的重叠率(百分比)。与MAQ相比,BM-SNP可以识别dbSNP中的更多SNP,而且质量更高。仅由BM-SNP调用而不在dbSNP中调用的SNP可以作为新发现。所提出的BM-SNP方法集成了NGS数据多个方面的信息,因此具有较高的检测能力。 BM-SNP快速,能够在短时间内以20倍的平均覆盖率处理整个基因组数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号