首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Detecting Functional Modules Based on a Multiple-Grain Model in Large-Scale Protein-Protein Interaction Networks
【24h】

Detecting Functional Modules Based on a Multiple-Grain Model in Large-Scale Protein-Protein Interaction Networks

机译:大规模蛋白质-蛋白质相互作用网络中基于多粒度模型的功能模块检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting functional modules from a Protein-Protein Interaction (PPI) network is a fundamental and hot issue in proteomics research, where many computational approaches have played an important role in recent years. However, how to effectively and efficiently detect functional modules in large-scale PPI networks is still a challenging problem. We present a new framework, based on a multiple-grain model of PPI networks, to detect functional modules in PPI networks. First, we give a multiple-grain representation model of a PPI network, which has a smaller scale with super nodes. Next, we design the protein grain partitioning method, which employs a functional similarity or a structural similarity to merge some proteins layer by layer. Thirdly, a refining mechanism with border node tests is proposed to address the protein overlapping of different modules during the grain eliminating process. Finally, systematic experiments are conducted on five large-scale yeast and human networks. The results show that the framework not only significantly reduces the running time of functional module detection, but also effectively identifies overlapping modules while keeping some competitive performances, thus it is highly competent to detect functional modules in large-scale PPI networks.
机译:从蛋白质-蛋白质相互作用(PPI)网络检测功能模块是蛋白质组学研究中的一个基本而紧迫的问题,近年来,许多计算方法在其中发挥了重要作用。然而,如何有效和高效地检测大规模PPI网络中的功能模块仍然是一个具有挑战性的问题。我们提出了一种基于PPI网络的多粒度模型的新框架,以检测PPI网络中的功能模块。首先,我们给出了一个PPI网络的多粒度表示模型,该模型具有较小的超级节点规模。接下来,我们设计蛋白质晶粒分配方法,该方法利用功能相似性或结构相似性逐层合并某些蛋白质。第三,提出了一种具有边界节点测试的精制机制,以解决谷物消除过程中不同模块的蛋白质重叠问题。最后,在五个大型酵母和人类网络上进行了系统的实验。结果表明,该框架不仅可以显着减少功能模块检测的运行时间,而且可以有效地识别重叠的模块,同时保持一定的竞争性能,因此具有在大型PPI网络中检测功能模块的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号