首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Identifying Spurious Interactions in the Protein-Protein Interaction Networks Using Local Similarity Preserving Embedding
【24h】

Identifying Spurious Interactions in the Protein-Protein Interaction Networks Using Local Similarity Preserving Embedding

机译:使用局部相似性保留嵌入识别蛋白质相互作用网络中的虚假相互作用

获取原文
获取原文并翻译 | 示例

摘要

In recent years, a remarkable amount of protein-protein interaction (PPI) data are being available owing to the advance made in experimental high-throughput technologies. However, the experimentally detected PPI data usually contain a large amount of spurious links, which could contaminate the analysis of the biological significance of protein links and lead to incorrect biological discoveries, thereby posing new challenges to both computational and biological scientists. In this paper, we develop a new embedding algorithm called local similarity preserving embedding (LSPE) to rank the interaction possibility of protein links. By going beyond limitations of current geometric embedding methods for network denoising and emphasizing the local information of PPI networks, LSPE can avoid the unstableness of previous methods. We demonstrate experimental results on benchmark PPI networks and show that LSPE was the overall leader, outperforming the state-of-the-art methods in topological false links elimination problems.
机译:近年来,由于实验高通量技术的进步,可获得大量的蛋白质间相互作用(PPI)数据。但是,通过实验检测到的PPI数据通常包含大量的虚假链接,这可能会污染对蛋白质链接的生物学意义的分析并导致错误的生物学发现,从而给计算和生物学科学家带来新的挑战。在本文中,我们开发了一种新的嵌入算法,称为局部相似性保留嵌入(LSPE),以对蛋白质链接的相互作用可能性进行排序。通过超越当前用于网络降噪的几何嵌入方法的局限性并强调PPI网络的本地信息,LSPE可以避免先前方法的不稳定性。我们在基准PPI网络上演示了实验结果,并表明LSPE在总体上处于领先地位,在拓扑虚假链接消除问题方面优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号