首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification
【24h】

Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification

机译:分类中基于成本的特征选择的多目标粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is an important data-preprocessing technique in classification problems such as bioinformatics and signal processing. Generally, there are some situations where a user is interested in not only maximizing the classification performance but also minimizing the cost that may be associated with features. This kind of problem is called cost-based feature selection. However, most existing feature selection approaches treat this task as a single-objective optimization problem. This paper presents the first study of multi-objective particle swarm optimization (PSO) for cost-based feature selection problems. The task of this paper is to generate a Pareto front of nondominated solutions, that is, feature subsets, to meet different requirements of decision-makers in real-world applications. In order to enhance the search capability of the proposed algorithm, a probability-based encoding technology and an effective hybrid operator, together with the ideas of the crowding distance, the external archive, and the Pareto domination relationship, are applied to PSO. The proposed PSO-based multi-objective feature selection algorithm is compared with several multi-objective feature selection algorithms on five benchmark datasets. Experimental results show that the proposed algorithm can automatically evolve a set of nondominated solutions, and it is a highly competitive feature selection method for solving cost-based feature selection problems.
机译:在生物信息学和信号处理等分类问题中,特征选择是一种重要的数据预处理技术。通常,在某些情况下,用户不仅对最大化分类性能感兴趣,而且对将可能与功能关联的成本最小化感兴趣。这种问题称为基于成本的特征选择。但是,大多数现有的特征选择方法都将此任务视为单目标优化问题。本文提出了针对基于成本的特征选择问题的多目标粒子群优化(PSO)的第一项研究。本文的任务是生成非支配解决方案的Pareto前沿,即特征子集,以满足实际应用中决策者的不同要求。为了提高所提出算法的搜索能力,将基于概率的编码技术和有效的混合算子以及拥挤距离,外部档案和帕累托支配关系的思想一起应用于PSO。将所提出的基于PSO的多目标特征选择算法与五个基准数据集上的几种多目标特征选择算法进行了比较。实验结果表明,该算法能够自动演化出一组非支配解,是解决基于成本的特征选择问题的一种极具竞争力的特征选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号