首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Artificial Fish Swarm Optimization Based Method to Identify Essential Proteins
【24h】

Artificial Fish Swarm Optimization Based Method to Identify Essential Proteins

机译:基于人工鱼类群的优化方法鉴定基本蛋白质

获取原文
获取原文并翻译 | 示例

摘要

It is well known that essential proteins play an extremely important role in controlling cellular activities in living organisms. Identifying essential proteins from protein protein interaction (PPI) networks is conducive to the understanding of cellular functions and molecular mechanisms. Hitherto, many essential proteins detection methods have been proposed. Nevertheless, those existing identification methods are not satisfactory because of low efficiency and low sensitivity to noisy data. This paper presents a novel computational approach based on artificial fish swarm optimization for essential proteins prediction in PPI networks (called AFSO_EP). In AFSO_EP, first, a part of known essential proteins are randomly chosen as artificial fishes of priori knowledge. Then, detecting essential proteins by imitating four principal biological behaviors of artificial fishes when searching for food or companions, including foraging behavior, following behavior, swarming behavior, and random behavior, in which process, the network topology, gene expression, gene ontology (GO) annotation, and subcellular localization information are utilized. To evaluate the performance of AFSO_EP, we conduct experiments on two species (Saccharomyces cerevisiae and Drosophila melanogaster), the experimental results show that our method AFSO_EP achieves a better performance for identifying essential proteins in comparison with several other well-known identification methods, which confirms the effectiveness of AFSO_EP.
机译:众所周知,基本蛋白质在控制生物体中的细胞活性方面发挥着极其重要的作用。从蛋白质蛋白质相互作用(PPI)网络中鉴定基本蛋白有利于对细胞功能和分子机制的理解。迄今为止,已经提出了许多基本蛋白质检测方法。然而,由于对嘈杂数据的效率低,敏感性低,那些现有的识别方法并不令人满意。本文提出了一种基于人工鱼类群优化的新型计算方法,对PPI网络(称为AFSO_EP)的基本蛋白质预测。在AFSO_EP中,首先,一部分已知的必需蛋白被随机选择作为先验知识的人造鱼类。然后,通过在寻找食物或同伴时模仿人造鱼类的四个主要生物学行为来检测基本蛋白质,包括觅食行为,行为,蜂拥而至的行为和随机行为,其中网络拓扑,基因表达,基因本体(GO )利用注释和亚细胞定位信息。为了评估AFSO_EP的表现,我们对两种物种进行实验(酿酒酵母酿酒酵母和果蝇),实验结果表明,我们的方法AFSO_EP鉴定了与若干其他众所周知的鉴定方法相比识别必需蛋白的性能更好的性能,这证实了AFSO_EP的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号