首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Implementation and Evaluation of an Algorithm for Cryptographically Private Principal Component Analysis on Genomic Data
【24h】

Implementation and Evaluation of an Algorithm for Cryptographically Private Principal Component Analysis on Genomic Data

机译:基因组数据加密专用主成分分析算法的实现与评估

获取原文
获取原文并翻译 | 示例

摘要

We improve the quality of cryptographically privacy-preserving genome-wide association studies by correctly handling population stratification-the inherent genetic difference of patient groups, e.g., people with different ancestries. Our approach is to use principal component analysis to reduce the dimensionality of the problem so that we get less spurious correlations between traits of interest and certain positions in the genome. While this approach is commonplace in practical genomic analysis, it has not been used within a privacy-preserving setting. In this paper, we use cryptographically secure multi-party computation to tackle principal component analysis, and present an implementation and experimental results showing the performance of the approach.
机译:我们通过正确处理人口分层-患者群体(例如具有不同祖先的人)的内在遗传差异,来提高密码保护隐私的全基因组范围关联研究的质量。我们的方法是使用主成分分析来减少问题的范围,从而使目标特征与基因组中某些位置之间的杂散相关性降低。尽管这种方法在实际的基因组分析中很常见,但尚未在保护隐私的环境中使用。在本文中,我们使用密码安全的多方计算来解决主成分分析,并给出了一种实现和实验结果,展示了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号