首页> 外文期刊>ACM transactions on mathematical software >Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis
【24h】

Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis

机译:算法971:用于主成分分析的随机算法的实现

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed intense development of randomizedmethods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).
机译:近年来,目睹了低秩近似的随机方法的迅速发展。这些方法针对主成分分析和截断奇异值分解的计算。本文为Mathworks的MATLAB(一种流行的用于数值计算的软件平台)提供了一种本质上是黑盒子的,万无一失的实现。如几次测试所示,用于低秩逼近的随机算法基本上在所有方面都优于或至少与经典确定性技术(例如Lanczos迭代趋于收敛)相匹配:准确性,计算效率(速度和内存使用率),易用性使用,可并行性和可靠性。但是,经典过程仍然是估计频谱范数的选择方法,并且在计算最小奇异值和相应奇异矢量(或奇异子空间)方面要优越得多。

著录项

  • 来源
    《ACM transactions on mathematical software》 |2017年第3期|28.1-28.14|共14页
  • 作者单位

    Yale Univ, Program Appl Math, 51 Prospect St, New Haven, CT 06510 USA;

    Yale Univ, Program Appl Math, 51 Prospect St, New Haven, CT 06510 USA;

    Facebook Artificial Intelligence Res, New York, NY USA|Facebook, 8th Floor,770 Broadway, New York, NY 10003 USA;

    Yale Univ, Program Appl Math, 51 Prospect St, New Haven, CT 06510 USA|Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06520 USA;

    Yale Univ, Program Appl Math, 51 Prospect St, New Haven, CT 06510 USA|Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06520 USA|Yale Univ, Interdept Program Computat Biol & Bioinformat, New Haven, CT USA;

    Facebook Artificial Intelligence Res, New York, NY USA|Facebook, 8th Floor,770 Broadway, New York, NY 10003 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号