首页> 外文期刊>Human-Machine Systems, IEEE Transactions on >Driving Style Classification Using a Semisupervised Support Vector Machine
【24h】

Driving Style Classification Using a Semisupervised Support Vector Machine

机译:使用半监督支持向量机的驾驶风格分类

获取原文
获取原文并翻译 | 示例

摘要

Supervised learning approaches are widely used for driving style classification; however, they often require a large amount of labeled training data, which is usually scarce in a real-world setting. Moreover, it is time-consuming to manually label huge amounts of driving data due to uncertainties of driver behavior and variances among the data analysts. To address this problem, a semisupervised approach, a semisupervised support vector machine (S3VM), is employed to classify drivers into aggressive and normal styles based on a few labeled data points. First, a few data clusters are selected and manually labeled using a -means clustering method. Then, a specific differentiable surrogate of a loss function is developed, which makes it feasible to use standard optimization tools to solve the nonconvex optimization problem. One of the most popular quasi-Newton algorithms is then used to assign the optimal label to all of the training data. Finally, we compare the S3VM method with a support vector machine method for classifying driving styles from different amounts of labeled data. Experiments show that the S3VM method can improve the classification accuracy by about 10% and reduce the labeling effort by using only a few labeled data clusters among huge amounts of unlabeled data.
机译:监督学习方法被广泛用于驾驶风格分类。但是,它们通常需要大量带标签的训练数据,而在实际环境中通常是稀缺的。此外,由于驾驶员行为的不确定性和数据分析人员之间的差异,手动标记大量的驾驶数据非常耗时。为了解决这个问题,采用了一种半监督方法,即半监督支持向量机(S3VM),可以基于一些标记的数据点将驱动程序分为激进和正常样式。首先,选择一些数据集群,并使用-means集群方法对其进行手动标记。然后,开发了损失函数的一个特定的可微替代,这使得使用标准优化工具解决非凸优化问题变得可行。然后使用最流行的准牛顿算法之一为所有训练数据分配最佳标签。最后,我们将S3VM方法与支持向量机方法进行比较,以从不同数量的标记数据中对驾驶方式进行分类。实验表明,通过在大量未标记数据中仅使用少数标记数据簇,S3VM方法可以将分类精度提高约10%,并减少标记工作量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号