首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data
【24h】

Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data

机译:半监督一类支持向量机用于遥感数据分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two semisupervised one-class support vector machine (OC-SVM) classifiers for remote sensing applications. In one-class image classification, one tries to detect pixels belonging to one of the classes in the image and reject the others. When few labeled pixels of only one class are available, obtaining a reliable classifier is a difficult task. In the particular case of SVM-based classifiers, this task is even harder because the free parameters of the model need to be finely adjusted, but no clear criterion can be adopted. In order to improve the OC-SVM classifier accuracy and alleviate the problem of free-parameter selection, the information provided by unlabeled samples present in the scene can be used. In this paper, we present two state-of-the-art algorithms for semisupervised one-class classification for remote sensing classification problems. The first proposed algorithm is based on modifying the OC-SVM kernel by modeling the data marginal distribution with the graph Laplacian built with both labeled and unlabeled samples. The second one is based on a simple modification of the standard SVM cost function which penalizes more the errors made when classifying samples of the target class. The good performance of the proposed methods is illustrated in four challenging remote sensing image classification scenarios where the goal is to detect one of the classes present on the scene. In particular, we present results for multisource urban monitoring, hyperspectral crop detection, multispectral cloud screening, and change-detection problems. Experimental results show the suitability of the proposed techniques, particularly in cases with few or poorly representative labeled samples.
机译:本文提出了两种用于遥感应用的半监督一类支持向量机(OC-SVM)分类器。在一类图像分类中,一种尝试检测属于图像中一类的像素,而拒绝其他像素。当只有一个类别的少数标记像素可用时,获得可靠的分类器是一项艰巨的任务。在基于SVM的分类器的特定情况下,此任务甚至更加困难,因为需要对模型的自由参数进行精细调整,但无法采用明确的标准。为了提高OC-SVM分类器的准确性并减轻自由参数选择的问题,可以使用场景中存在的未标记样本提供的信息。在本文中,我们提出了两种用于遥感分类问题的半监督一类分类的最新算法。第一个提出的算法基于修改OC-SVM内核,方法是使用带有标记和未标记样本的图Laplacian构建数据边际分布模型。第二个是基于对标准SVM成本函数的简单修改,它对目标类别的样本进行分类时所犯的错误更多。在四个具有挑战性的遥感图像分类场景中说明了所提出方法的良好性能,其中目标是检测场景中存在的类别之一。特别是,我们介绍了多源城市监测,高光谱作物检测,多光谱云筛查和变化检测问题的结果。实验结果表明了所提出技术的适用性,特别是在标记样品很少或代表性较差的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号