首页> 外文期刊>GIScience & remote sensing >Multiple intra-urban land use simulations and driving factors analysis: a case study in Huicheng, China
【24h】

Multiple intra-urban land use simulations and driving factors analysis: a case study in Huicheng, China

机译:多个城市内部土地利用模拟和驱动因素分析:以中国惠城市为例

获取原文
获取原文并翻译 | 示例

摘要

Simulations of intra-urban land use changes have gradually attracted more attention as these approaches are extremely helpful in regard to decision making and policy formulation. While prior studies mostly focused on methods of developing intra-urban level simulations, very little research has been conducted explain the factors driving intra-urban land use change. Urban planners are highly concerned with how inner-city structures are formed and how they function. Here, to simulate multiple intra-urban land use changes and to identify the contribution of different driving factors, we developed a random forests (RF) algorithm-based cellular automata (CA) simulation model. In this study, the model applied diverse categories of spatial variables, including traffic location factors, environmental factors, public services, and population density, as the driving factors to enhance our understanding of the dynamics of internal urban land use. The CA model was tested using data from the Huicheng district of Huizhou city in the Guangdong province of China. The Model was validated using actual historical land use data from 2000 to 2010. By applying the validated model, multiple intra-urban land use maps were simulated for 2015. Simultaneously, spatial variable importance measures (VIMs) were calculated by using the out-of-bag (OOB) error estimation approach of the RF algorithm. Based on the calculation results, we assessed and analysed the significance of each intra-urban land use driver for this region. This study provides urban planners and relevant scholars with detailed and targeted information that can aid in the formulation of specific planning strategies for different intra-urban land uses and support the future evolution of this area.
机译:由于这些方法对于决策和政策制定非常有帮助,因此城市内土地利用变化的模拟已逐渐引起人们的关注。尽管先前的研究主要集中在开发城市内部水平模拟的方法,但很少进行研究来解释驱动城市内部土地利用变化的因素。城市规划者高度关注城市内部结构的形成方式及其功能。在这里,为了模拟多个城市内部土地利用变化并确定不同驱动因素的贡献,我们开发了基于随机森林(RF)算法的细胞自动机(CA)模拟模型。在本研究中,该模型应用了各种类别的空间变量,包括交通位置因素,环境因素,公共服务和人口密度,作为驱动因素,以加深我们对城市内部土地利用动态的理解。使用来自中国广东省惠州市惠城区的数据对CA模型进行了测试。该模型已使用2000年至2010年的实际历史土地利用数据进行了验证。通过使用已验证的模型,对2015年的多个城市内部土地利用图进行了模拟。同时,使用了外部模型计算了空间变量重要性度量(VIM)。 RF算法的-bag(OOB)误差估计方法。根据计算结果,我们评估并分析了每个城市内土地利用驱动因素对该区域的重要性。这项研究为城市规划者和相关学者提供了详细而有针对性的信息,可以帮助制定针对不同城市内部土地用途的特定规划策略,并支持该地区的未来发展。

著录项

  • 来源
    《GIScience & remote sensing》 |2019年第2期|282-308|共27页
  • 作者单位

    Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Guangdong, Peoples R China;

    Peking Univ, Inst Remote Sensing & Geog Informat Syst, Beijing, Peoples R China;

    China Univ Geosci, Sch Informat Engn, Wuhan, Hubei, Peoples R China|Alibaba Grp, Dept Data Technol & Prod, Hangzhou, Zhejiang, Peoples R China;

    Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Guangdong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cellular automata; urban planning; multiple intra-urban land use simulations; driving factors analysis; random forests algorithm;

    机译:元胞自动机;城市规划;多个城市内土地利用模拟;驱动因素分析;随机森林算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号