首页> 外文期刊>GIScience & remote sensing >Optimal spatial resolution of Unmanned Aerial Vehicle (UAV)-acquired imagery for species classification in a heterogeneous grassland ecosystem
【24h】

Optimal spatial resolution of Unmanned Aerial Vehicle (UAV)-acquired imagery for species classification in a heterogeneous grassland ecosystem

机译:异类草地生态系统中用于物种分类的无人机图像的最佳空间分辨率

获取原文
获取原文并翻译 | 示例

摘要

Species composition is an essential biophysical attribute of vegetative ecosystems. Unmanned aerial vehicle (UAV)-acquired imagery with ultrahigh spatial resolution is a valuable data source for investigating species composition at a fine scale, which is extremely important for species-mixed ecosystems (e.g., grasslands and wetlands). However, the ultrahigh spatial resolution of UAV imagery also poses challenges in species classification since the imagery captures very detailed information of ground features (e.g., gaps, shadow) which would add substantial noise to image classification. In this study, we obtained multi-temporal UAV imagery with 5cm resolution and resampled them to acquire imagery with 10, 15, and 20cm resolution. The images were then utilized for species classification using Geographic Object-Based Image Analysis (GEOBIA) aiming to assess the influence of different imagery spatial resolution on the classification accuracy. Results show that the overall classification accuracy of imagery with 5, 10, and 15cm resolution are close, while the classification accuracy on 20-cm imagery is much lower. These results are expected because the object features (e.g., vegetation index values and standard deviation) of same species vary slightly between 5 and 15cm resolution, but not at the 20-cm resolution. We also found that the same species show different producer's and user's accuracy when using imagery with different spatial resolutions. These results suggest that it is essential to select the optimal spatial resolution of imagery for investigating a vegetative ecosystem of interest.
机译:物种组成是营养生态系统的重要生物物理属性。具有超高空间分辨率的无人飞行器(UAV)采集的图像是用于精细规模研究物种组成的宝贵数据源,这对于物种混合生态系统(例如草地和湿地)极为重要。但是,无人机图像的超高空间分辨率也给物种分类带来了挑战,因为该图像捕获了非常详细的地面特征信息(例如,空隙,阴影),这会给图像分类带来很大的噪音。在这项研究中,我们获得了5cm分辨率的多时空无人机图像,并对它们进行了重采样以获得10、15和20cm分辨率的图像。然后使用基于地理对象的图像分析(GEOBIA)将图像用于物种分类,目的是评估不同图像空间分辨率对分类准确性的影响。结果表明,分辨率为5、10和15cm的图像的总体分类精度接近,而20cm图像的分类精度则低得多。这些结果是可以预期的,因为同一物种的对象特征(例如,植被指数值和标准差)在5至15厘米分辨率之间略有变化,但在20厘米分辨率下却没有。我们还发现,当使用具有不同空间分辨率的图像时,同一物种显示出不同的生产者和使用者准确性。这些结果表明,对于研究感兴趣的植物生态系统,选择图像的最佳空间分辨率至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号