首页> 外文OA文献 >Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods
【2h】

Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods

机译:使用从无人机(UAV)获得的超高分辨率图像和自动3D照片重建方法对树高进行量化

摘要

This study provides insight into the assessment of canopy biophysical parameter retrieval using passive sensors and specifically into the quantification of tree height in a discontinuous canopy using a low-cost camera on board an unmanned aerial vehicle (UAV). The UAV was a 2-m wingspan fixed-wing platform with 5.8kg take-off weight and 63km/h ground speed. It carried a consumer-grade RGB camera modified for color-infrared detection (CIR) and synchronized with a GPS unit. In this study, the configuration of the electric UAV carrying the camera payload enabled the acquisition of 158ha in one single flight. The camera system made it possible to acquire very high resolution (VHR) imagery (5cmpixel-1) to generate ortho-mosaics and digital surface models (DSMs) through automatic 3D reconstruction methods. The UAV followed pre-designed flight plans over each study site to ensure the acquisition of the imagery with large across- and along-track overlaps (i.e. >80%) using a grid of parallel and perpendicular flight lines. The validation method consisted of taking field measurements of the height of a total of 152 trees in two different study areas using a GPS in real-time kinematic (RTK) mode. The results of the validation assessment conducted to estimate tree height from the VHR DSMs yielded R2=0.83, an overall root mean square error (RMSE) of 35cm, and a relative root mean square error (R-RMSE) of 11.5% for trees with heights ranging between 1.16 and 4.38m. An assessment conducted on the effects of the spatial resolution of the input images acquired by the UAV on the photo-reconstruction method and DSM generation demonstrated stable relationships for pixel resolutions between 5 and 30cm that rapidly degraded for input images with pixel resolutions lower than 35cm. RMSE and R-RMSE values obtained as a function of input pixel resolution showed errors in tree quantification below 15% when 30cmpixel-1 resolution imagery was used to generate the DSMs. The study conducted in two orchards with this UAV system and the photo-reconstruction method highlighted that an inexpensive approach based on consumer-grade cameras on board a hand-launched unmanned aerial platform can provide accuracies comparable to those of the expensive and computationally more complex light detection and ranging (LIDAR) systems currently operated for agricultural and environmental applications. © 2014 Elsevier B.V.
机译:这项研究提供了对使用无源传感器评估冠层生物物理参数的评估的见解,尤其是使用无人飞行器(UAV)上的低成本摄像头对不连续冠层中树高的量化进行了深入了解。该无人机是一个2米翼展固定翼平台,起飞重量为5.8公斤,地面速度为63公里/小时。它带有一台消费级RGB摄像机,该摄像机经过修改以用于彩色红外检测(CIR),并与GPS单元同步。在这项研究中,载有摄像机有效载荷的电动无人机的配置使一次飞行中可获取158公顷。摄像头系统可以通过自动3D重建方法获取非常高分辨率(VHR)的图像(5cmpixel-1),以生成正交马赛克和数字表面模型(DSM)。无人机遵循每个研究地点的预先设计的飞行计划,以确保使用平行和垂直飞行线的网格获取具有较大的跨轨道和沿轨道重叠(即> 80%)的图像。验证方法包括使用GPS在实时运动(RTK)模式下对两个不同研究区域中总共152棵树的高度进行野外测量。验证评估的结果是根据VHR DSM估计树的高度,得出R2 = 0.83,总根均方差(RMSE)为35cm,相对根均方差(R-RMSE)为11.5%。高度在1.16和4.38m之间。对由无人机获取的输入图像的空间分辨率对光重建方法和DSM生成的影响进行的评估表明,像素分辨率在5至30cm之间的关系稳定,而对于像素分辨率低于35cm的输入图像,该关系会迅速退化。当使用30cmpixel-1分辨率的图像生成DSM时,根据输入像素分辨率获得的RMSE和R-RMSE值显示树量化误差低于15%。使用该无人机系统和照片重建方法在两个果园中进行的研究强调,基于廉价的方法,该方法基于在手持式无人驾驶空中平台上安装的消费级相机,其精度可与昂贵且计算复杂的光源相比当前用于农业和环境应用的探测和测距(LIDAR)系统。 ©2014 Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号