首页> 外文期刊>Genetic programming and evolvable machines >Finding needles in haystacks is harder with neutrality
【24h】

Finding needles in haystacks is harder with neutrality

机译:中立更难在大海捞针

获取原文
获取原文并翻译 | 示例

摘要

This research presents an extended analysis of the reported successes of the Cartesian Genetic Programming method on a simplified form of the Boolean parity problem. We show the method of sampling used by the CGP is significantly less effective at locating solutions than the solution density of the corresponding formula space would warrant. We present results indicating that the loss of performance is caused by the sampling bias of the CGP, due to the neutrality friendly representation. We implement a simple intron free random sampling algorithm which performs considerably better on the same problem and then explain how such performance is possible.
机译:这项研究针对布尔奇偶校验问题的简化形式,对笛卡尔遗传规划方法的成功报告进行了扩展分析。我们显示,CGP所使用的抽样方法在查找解决方案方面远不如相应公式空间的解决方案密度所保证的有效。我们提出的结果表明,由于中立友好表示,性能损失是由CGP的采样偏差引起的。我们实现了一个简单的无内含子随机抽样算法,该算法在相同问题上的性能要好得多,然后解释如何实现这种性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号